Name of the	AP14972645 Creation of composite materials based on mixtures of
project, IRN	poly(2-ethyl-2-polyoxazolines) with the addition of nanofillers,
Terms of	01.09.2022-31.12.2024
implementation	
Project manager	Akhmetova Marzhan Kushkinbayevna, Master's degree, lecturer of the
1 Toject manager	,
D 4	Department of Physics
Report	The most effective way to reduce polymer waste is the development of
	biodegradable polymers, i.e. polymers that retain operational
	characteristics only during the consumption period, and then undergo
	physico-chemical and biological transformations under the influence of
	environmental factors (light, temperature, moisture, water) and are easily
	incorporated into the metabolic processes of natural biosystems (bacteria,
	yeast, mushrooms, algae). In this case, high-molecular substances
	decompose into low-molecular (water and carbon dioxide), humic
	substances and biomass. In this way, a natural cycle of substances is
	carried out, capable of maintaining ecological balance in nature.
	Currently, the demand for composite polymers has sharply increased due
	to their biodegradation ability and the complex of properties inherent only
	to them. Polyoxazolines, which have a wide range of biological activity,
	have found wide application in a number of industrial fields. Their use
	formed the basis for the creation of water treatment technology,
	processing of various types of man-made waste, etc. A promising
	direction is the development of biodegradable composite packaging
	materials based on Poly(2-ethyl-2-oxazoline).
	The disadvantage of the polymer polyoxazoline is the high cost, it is also
	important to note that the high price of the material is a temporary
	phenomenon until the production of biopolymers has become widespread
	and the process of their release is not fully debugged. Over time, the cost
	of bioplastics will decrease, and they will become available to a wide
	range of enterprises.
	Due to the annual increase in polymer-household waste, only part of
	which is recycled, and mostly they accumulate in landfills, the question of
	the use of biodegradable composite materials in many industries and the
	development of green technologies is acute. Therefore, one of the urgent
	problems is the development of technology and the creation of
	decomposable composite materials based on hydrophilic polymers with
	improved physicochemical properties. The resulting composites,
	depending on the filler, can be used both for mulching soils, for thermally
	protective coatings, biodegradable packages, and for obtaining
	antibacterial films, etc.
	Polymer-based solid particle systems have found wide application in
	various fields of research, as well as in everyday life, including paints,
	photovoltaics, catalysis, drug delivery and geranostics. Depending on the
	intended application, it can be precisely designed by adjusting parameters
	such as size, surface chemistry, shape and type of polymer, chemical
	composition and their physico-chemical properties. Size has been one of
	the main parameters studied in recent decades, and a large number of
	manufacturing methods have been developed to manipulate particle
	diameters ranging from nanometers to micrometers. Along with the size,
	the type of polymer used, as well as the surface morphology and chemical

	composition of the manufactured particles mainly determine the
	characteristics of the composite material. To date, numerous classes of
	biodegradable and biocompatible polymers are used to give particle
	systems the desired properties.
	The main idea of the project is to create new polymer nanocomposites
	with improved physicochemical, mechanical properties and increased
	biodegradability.
	As well as the accumulation of deep fundamental knowledge in the field
	of the influence of nature, the morphology of filler nanoparticles, and the
	mechanisms of composite structure formation
Carl	1
Goal	The aim of the project is to develop scientific and technological bases for
	modifying polymer nanocomposites with improved physicochemical
	(thermal, electrical, optical properties and decomposability) and
	mechanical properties
Expected results	The effect of the additive and the percentage of reinforcing additives on
	the tensile strength of composites, bending, compression, decomposability
	and heat resistance will be investigated.
	The developed approaches to improve the physical and mechanical
	properties and decomposability can be used in conjunction with modern
	methods and methods for improving the physical and mechanical
	properties of composite materials, which may be in demand in various
	industries (in everyday life, for milling in agriculture, in the field of
	medicine, etc.)
	Fundamental knowledge will be accumulated in the field of the influence
	of nature, the morphology of the surface of nanofillers particles, the
	processes of chemical interaction between the components of the polymer
	matrix on the processes of structure formation, structure, physico-
	chemical, thermal and optical properties of polymer nanocomposites
Research Group	Supervisor: Akhmetova Marzhan Kushkinbayevna, Master, Hirsch Index
	- 3, Scopus Author ID: 57217105534, Researcher ID: AAR-1671-2020,
	ORCID: 0000-0001-6485-8063.
	Scientific Consultant: Bekeshev Amirbek Zarlykovich, Candidate of
	Physical and Mathematical Sciences, Associate Professor, Hirsch Index –
	7, Scopus Author ID: 6602335201, Researcher ID:AAO-5844-2020
	ORCID: 0000-0002-7038-4631.