Project name, IRN	AP15473190 - Methods for solving boundary value problems for
1 Toject name, 1101	differential equations with impulsive action at non-fixed times
Completion date	12.11.2022-31.12.2024
Project supervisor	Mukash Meirambek, teacher of the Department of Mathematics
Report	Impulse systems of differential equations serve as mathematical models
Keport	of objects that are subjected to short-term forces in the process of
	evolution. In the mathematical description of the development of real
	processes with short-term perturbations, one can often neglect the
	duration of perturbations and consider these perturbations to be
	"instantaneous." Such a description leads to the need to study dynamical
	systems with continuous trajectories or differential equations with their
	impulsive action. The dissertation of the applicant considers a unique
	solution to boundary value problems and an algorithm for finding a
	solution to simple differential equations with impulsive action at non-
	fixed times. For ordinary differential equations with impulsive action at
	non-fixed moments of time, with the aim of further development of
	boundary value problems, methods for finding a solution to the problem
	are studied and an algorithm for finding a solution is developed. In this
	project, methods of averaging and parametrization are considered for
	solving boundary value problems for ordinary differential equations with
	impulsive action at non-fixed times. The averaging method is aimed at
	determining the conditions for the existence of a solution to a boundary
	value problem based on the conditions for solving an average boundary
	value problem for the corresponding system of differential equations.
	Considering first the averaged system for a given system, if there is a
	solution to the averaged boundary value problem, then for the values of
	the subparameter it is indicated to find a solution to the initial boundary
	value problem that is close to the solution of the average problem.
Purpose	Set the solvability conditions for boundary value problems for differential
	equations with impulsive action at non-fixed times. Develop numerical
	methods for solving boundary value problems for differential equations
	with impulsive action. Construct algorithms for finding solutions to
	boundary value problems for differential equations with impulsive action
	and their numerical implementation.
Expected results	Conditions for the solvability of boundary value problems for systems of
	differential equations with impulsive action at non-fixed times will be
	established.
	• Approximate and numerical methods for solving boundary value
	problems for systems of differential equations with impulsive action at non-fixed times will be developed.
	1
	• Efficient algorithms for finding solutions to boundary value problems for systems of differential equations with impulsive action at non-fixed
	times will be built.
	Mathematical modeling of real processes often leads to boundary value
	problems for differential equations with impulsive actions. The expected
	scientific results and the approximate methods developed on their basis
	can be the mathematical basis for the qualitative and quantitative analysis
	of the simulated processes.
	Scientific results can be applied in the study of new classes of boundary
	value problems for systems of differential equations with impulsive
	The problems for Systems of Chieffendan equations with impulsive

	actions, used for a comprehensive analysis of the simulated processes of physics, biology, chemistry, economics, etc.
Research group	Supervisor: Mukash Meirambek. ORCID: https://orcid.org/ 0000-0002-8663-8149. Scientific consultant: Асанова Анар Тұрмағанбетқызы, доктор фм.наук., профессор, Хирш индексі — 11, Web of Science Researcher ID: C-6804-2016; Scopus Author ID: 57201858608, ORCID: https://orcid.org/0000-0001-8697-8920.
Publications in scientific publications	-