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The relevance of the topic is due, on the one hand, to the numerous 

applications of integro-differential equations in solving problems of natural sciences 

and, on the other hand, to the necessity of development of new constructive methods 

that allow effectively determine the solvability of nonlinear problems for integro-

differential equations and find their solutions. 

Fredholm integro-differential equations have several of features that should be 

taken into account at statement of problems for these equations and development of 

methods for solving them. 

In particular, a linear nonhomogeneous Fredholm integro-differential equation 

might be unsolvable without additional requirements imposed on the solution1,2. Note 

that the criteria for the solvability and unique solvability of linear boundary value 

problems for the Fredholm integro-differential equations were obtained quite 

recently3. Main existing methods for studying the boundary value problems for the 

Fredholm integro-differential equations, such as the A.I. Nekrasov’s method and the 

Green’s function method, are applicable under unique solvability of some 

intermediate problems. These methods establish various sufficient conditions for the 

existence of solution, but do not allow us to obtain criteria for the solvability of 

                                                 
1 Boichuk A.A., Samoilenko A.M. Generalized inverse operators and Fredholm boundary value 

problems. – Berlin, De Gruyter, 2016. 
2 Dzhumabaev D.S. On one approach to solve the linear boundary value problems for Fredholm 

integro-differential equations // J. Comput. Appl. Math. – 2016. – Vol. 294. 
3 Dzhumabaev D.S. A Method for Solving the Linear Boundary Value Problem for an Integro 

Differential Equation // Comput. Math. Math. Phys. – 2010 – Vol. 50, № 7. 



 
 

boundary value problems for these equations. Therefore, based on the 

parameterization method4 D.S. Dzhumabaev was proposed a new approach to the 

study and solving the boundary value problems for the Fredholm integro-differential 

equations. Partition of the interval, where the Fredholm integro-differential equation 

is considered, puts a special Cauchy problem in accordance with this equation. If the 

latter problem is uniquely solvable, then its solution can be represented via the 

parameters introduced and the known values of the integro-differential equation. 

Substitution of these expressions into the boundary condition and solution continuity 

conditions at the interior points of the partition constructs a system of linear algebraic 

equations in the parameters introduced. It is proved that the solvability of the 

boundary value problem is equivalent to the solvability of this system. As can be 

seen, this approach also requires the unique solvability of the intermediate problem, 

the special Cauchy problem. However, in contrast to the above mentioned methods, 

for a linear Fredholm integro-differential equation with continuous matrices of the 

differential part and integral term, there exists an interval partition, in which the 

special Cauchy problem is uniquely solvable. This property of the intermediate 

problem of the parameterization method allows us to obtain the criteria for the 

solvability and unique solvability of linear boundary value problems for the Fredholm 

integro-differential equations. The partition Δ𝑁 of the interval [0, 𝑇], in which the 

corresponding special Cauchy problem is uniquely solvable, is said to be regular for 

the Fredholm integro-differential equation under consideration. The Fredholm 

integro-differential equation may not have a solution. Due to the existence of 

unsolvable Fredholm integro-differential equations, the classical general solution 

does not exist for all Fredholm integro-differential equations. Therefore, 

Dzhumabaev was introduced a new general solution5 of the linear Fredholm integro-

differential equation. A new general solution exists for any linear Fredholm integro-

differential equation. The application of this solution allows us to establish the 

solvability criteria for a linear inhomogeneous integro-differential Fredholm equation 

and boundary value problems for this equation. 

Mainly the nonlinear problems are solved by iterative methods. Many efficient 

iterative methods, such as Newton's method, require choosing a "good" initial guess. 

In6, iterative processes were constructed for nonlinear equations with unbounded 

operators and conditions for their convergence were set. The results were applied to 

                                                 
4 Dzhumabaev D.S. Conditions for Unique Solvability of a Linear Boundary Value Problem for an 

Ordinary Differential Equation // Zh. Vychisl. Mat. Mat. Fiz. – 1989. – № 29.  
5 Dzhumabaev D.S. New general solutions to linear Fredholm integro-differential equations and 

their applications on solving the boundary value problems // J. Comput. Appl. Math. – 2018. – Vol. 

327. 
6 Dzhumabaev D.S. Convergence of iterative methods for unbounded operator equations // Mat. 

Zametki. – 1987. –  Vol. 41, № 5. 



 
 

the nonlinear boundary value problems for the ordinary differential equations and 

partial differential equations7 . 

At applying the parameterization method to a boundary value problem for a 

nonlinear Fredholm integro-differential equation, the special Cauchy problem for a 

system of nonlinear integro-differential equations with parameters is the intermediate 

problem. In this case, iterative methods are used both for solving the special Cauchy 

problem and for solving the systems of nonlinear algebraic equations in parameters. 

An approach to finding an initial guess for the solutions to these problems is offered. 

One of the most effective methods for solving the problems for integro-

differential equations with a small numerical parameter is the averaging method8, 

which allows reducing the solvability of a boundary value problem for integro-

differential equations to the solvability of a similar problem for a differential 

averaged system. 

The purpose of the research is to develop constructive methods for the 

investigating and solving initial and boundary value problems for the Volterra and 

Fredholm integro-differential equations. 

The object of research are the initial and boundary value problems for 

nonlinear integro-differential equations. 

Research methods. The methods and results of the theory of differential, 

integro-differential and operator equations are used in the dissertation work. The 

main method of research and solving the problems considered in the present 

dissertation is the parameterization method. 

Scientific novelty and practical value of the work. In the dissertation work, 

- The special Cauchy problem for a system of nonlinear integro-differential 

equations with parameters is solved; 

- The new general solution to the Fredholm integro-differential equation with a 

nonlinear differential part is constructed; 

- The parameterization method is extended to the nonlinear boundary value 

problems for the Fredholm integro-differential equation; 

- An algorithm for finding a solution to a nonlinear boundary value problem for 

an integro-differential equation is developed and numerically implemented; 

- The conditions for the existence of a solution to a boundary value problem for 

an integro-differential equation under condition of solvability of the averaged 

boundary value problem for a system of differential equations are established. 

The results of the dissertation are mainly theoretical. The scientific significance 

of the work is to create a constructive method for the studying and solving the 

                                                 
7 Джумабаев Д.С. Скорость сходимости итерационных процессов для неограниченных 

операторных уравнений // Известия академия наук Каз ССР. – 1988. – № 5. 
8 Митропольский Ю.А., Байнов Д.Д., Милушева С.Д. Применение метода усреднения для 

решения краевых задач для обыкновенных дифференциальных уравнений и интегро-

дифференциальных уравнений // Мат.физика. – 1979. – Вып.25. – С. 3-22. 



 
 

problems for nonlinear integro-differential equations. The results obtained in this 

work can be used for solving the boundary value problems for the Fredholm integro-

differential equations, as well as for reading elective courses at the mathematical 

faculties of universities. 

Provisions for the protection. The following are taken out for the defense: 

- sufficient conditions for the existence of solutions to the special Cauchy 

problem for systems of nonlinear integro-differential equations with parameters; 

- iterative methods for solving the special Cauchy problem for systems of 

nonlinear integro-differential equations with parameters and their numerical 

implementations; 

- Δ𝑁 general solution to the Fredholm integro-differential equation with 

nonlinear differential part, its properties; 

- parameterization method for solving a nonlinear boundary value problem for 

the Fredholm integro-differential equation; 

- algorithms for solving the nonlinear boundary value problems for the Fredholm 

integro-differential equations, their numerical implementations; 

- sufficient conditions for the existence of an isolated solution to a nonlinear 

boundary value problem for the Fredholm integro-differential equation; 

- construction of a system of nonlinear algebraic equations in parameters for a 

boundary value problem for the Fredholm integro-differential equation with a 

nonlinear differential part and an algorithm for finding its solution; 

- algorithms for finding the initial guesses of solutions to the nonlinear special 

Cauchy problem and to the constructed system of nonlinear algebraic equations; 

- justification of the averaging method to investigating the existence of solutions 

to the initial and boundary value problems for the nonlinear Volterra integro-

differential equation. 

Publications. The main results of the dissertation work were published in 14 

papers, 2 articles in the journals recommended by CCSES MES RK, 1 article in a 

journal from the Scopus list, 1 article in a journal from the Web of Science list, and 1 

article in a journal from the ZbMath list, the rest were published in the materials of 

international scientific conferences. 

 

Summary of work 

In the first Section, consider the Fredholm integro-differential equation with 

nonlinear differential part 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥) + ∑

𝑚

𝑘=1

𝜑𝑘(𝑡) ∫

𝑇

0

𝜓𝑘(𝜏)𝑥(𝜏)𝑑𝜏,    𝑡 ∈ [0, 𝑇],    𝑥 ∈ ℝ𝑛.     (1) 



 
 

By the Dzhumabaev parameterization method, equation (1) is reduced to the 

system of nonlinear integro-differential equations with parameters  

𝑑𝑢𝑟

𝑑𝑡
= 𝑓(𝑡, 𝑢𝑟 + 𝜆𝑟) + 

∑

𝑚

𝑘=1

𝜑𝑘(𝑡) ∑

𝑁

𝑗=1

∫

𝑡𝑗

𝑡𝑗−1

𝜓𝑘(𝜏)[𝑢𝑗(𝜏) + 𝜆𝑗]𝑑𝜏,    𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟),              (2) 

subject to the initial conditions  

𝑢𝑟(𝑡𝑟−1) = 0,    𝑟 = 1, 𝑁̅̅ ̅̅ ̅.                                          (0.3) 

Problem (2), (3) is said to be the special Cauchy problem for a system of 

nonlinear integro-differential equations with parameters. 

Given a vector  𝜆(0) = (𝜆1
(0)

, 𝜆2
(0)

, … , 𝜆𝑁
(0)

) ∈ ℝ𝑛𝑁 and a positive number 𝜌 > 0, 

we compose the set 𝐺0(𝜌) = {(𝑡, 𝑥): 𝑡 ∈ [0, 𝑇], ‖𝑥 − 𝑥0(𝑡)‖ < 𝜌}, where 𝑥0(𝑡) =

𝜆𝑟
(0)

, 𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟), 𝑟 = 1, 𝑁̅̅ ̅̅ ̅, and 𝑥0(𝑇) = 𝜆𝑁
(0)

. 

Condition 1. Let the following inequalities be fulfilled: 

(1) ‖𝑓(𝑡, 𝑥)‖ ≤ 𝑀0, (𝑡, 𝑥) ∈ 𝐺0(𝜌), 𝑀0 is constant; 

(2) 𝑀1ℎ̅ = [𝑀0 + 𝐾0(𝜌 + ‖𝜆(0)‖)]ℎ̅ < 𝜌, 

where 

𝐾0 = ∑ 𝑚𝑎𝑥
𝑡∈[0,𝑇]

‖𝜑𝑘(𝑡)‖

𝑚

𝑘=1

∑ ∫

𝑡𝑗

𝑡𝑗−1

‖𝜓𝑘(𝜏)‖𝑑𝜏

𝑁

𝑗=1

. 

We introduce the following sets: 

𝐺𝑝
0(𝜌) = {(𝑡, 𝑥): 𝑡 ∈ [𝑡𝑝−1, 𝑡𝑝), ‖𝑥 − 𝑥0(𝑡)‖ < 𝜌 − 𝑀1(𝑡𝑝 − 𝑡)},    𝑝 = 1, 𝑁 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 

𝐺𝑁
0 (𝜌) = {(𝑡, 𝑥): 𝑡 ∈ [𝑡𝑁−1, 𝑡𝑁], ‖𝑥 − 𝑥0(𝑡)‖ < 𝜌 − 𝑀1(𝑡𝑁 − 𝑡)}, и  

𝐺0(Δ𝑁, 𝜌) = ⋃

𝑁

𝑟=1

𝐺𝑟
0(𝜌). 

While solving the boundary value problem for equation (1), we use the limit values of 

solutions to problem (2), (3), lim
𝑡→𝑡𝑟−0

𝑢𝑟(𝑡, 𝜆), 𝑟 = 1, 𝑁̅̅ ̅̅ ̅. In this connection, we consider 

the following special Cauchy problem on closed subintervals:  

𝑑𝑣𝑟

𝑑𝑡
= 𝑓(𝑡, 𝑣𝑟 + 𝜆𝑟) + ∑

𝑚

𝑘=1

𝜑𝑘(𝑡) ∑

𝑁

𝑗=1

∫

𝑡𝑗

𝑡𝑗−1

𝜓𝑘(𝜏)[𝑣𝑗(𝜏) + 𝜆𝑗]𝑑𝜏,    𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟], (4) 

𝑣𝑟(𝑡𝑟−1) = 0,    𝑟 = 1, 𝑁̅̅ ̅̅ ̅.                                                (5) 



 
 

The special Cauchy problem as the Cauchy problem for the Fredholm integro-

differential equations is not always solvable. Therefore, we investigate the solvability 

of the special Cauchy problem (4), (5). 

We choose the numbers 𝜌𝜆 = 𝜌 − 𝑀1ℎ̅., 𝜌𝑣 = 𝑀1ℎ̅, and construct the sets 

𝑆(𝜆(0), 𝜌𝜆) = {𝜆 = (𝜆1, 𝜆2, … , 𝜆𝑁) ∈ ℝ𝑛𝑁: ‖𝜆𝑟 − 𝜆𝑟
(0)

‖ < 𝜌𝜆,    𝑟 = 1, 𝑁̅̅ ̅̅ ̅}. 

𝑆(0, 𝜌𝑣) = {𝑣[𝑡] ∈ ℂ̃([0, 𝑇], Δ𝑁, ℝ𝑛𝑁): ‖𝑣[⋅]‖3 < 𝜌𝑣}.  

Let us introduce the following notation: 

𝐺(Δ𝑁) = (𝐺𝑝,𝑘(Δ𝑁)) is the 𝑛𝑚 × 𝑛𝑚 matrix consisting of the 𝑛 × 𝑛 matrices 

𝐺𝑝,𝑘(Δ𝑁) = ∑ ∫

𝑡𝑟

𝑡𝑟−1

𝜓𝑝(𝜏) ∫

𝜏

𝑡𝑟−1

𝜑𝑘(𝑠)𝑑𝑠𝑑𝜏,

𝑁

𝑟=1

   𝑝, 𝑘 = 1, 𝑚̅̅ ̅̅ ̅̅ . 

[𝐼 − 𝐺(Δ𝑁)]−1 = (𝑅𝑘,𝑝(Δ𝑁)), 𝑘, 𝑝 = 1, 𝑚̅̅ ̅̅ ̅̅ , where 𝐼 is the identity matrix of 

dimention 𝑛𝑚, 𝑅𝑘,𝑝(Δ𝑁) are the square matrices of dimention 𝑛. 

 

Next statement establishes sufficient conditions for the existence of a unique solution 

to the special Cauchy problem for the system of nonlinear integro-differential 

Fredholm equations with parameters (4), (5). 

Theorem 1. Let condition 1 be fulfilled, the matrix 𝐼 − 𝐺(𝛥𝑁) be invertable and 

the following inequalites be valid: 

(i) ‖𝑓(𝑡, 𝑥′) − 𝑓(𝑡, 𝑥′′)‖ ≤ 𝐿0‖𝑥′ − 𝑥′′‖, 𝐿0 is constant, (𝑡, 𝑥′), (𝑡, 𝑥′′) ∈

𝐺0(𝜌); 

(ii) (𝐿0 + 𝐾0)ℎ̅ < 1; 

(iii) 𝜒 (𝑀0 + 𝐾0(𝜌𝜆 + ‖𝜆(0)‖)) ℎ̅ < 𝜌𝑣,  where  

𝜒 = 1 + ℎ̅ ∑

𝑚

𝑘=1

𝑚𝑎𝑥
𝑡∈[0,𝑇]

‖𝜑𝑘(𝑡)‖ ∑

𝑚

𝑝=1

‖𝑅𝑘,𝑝(𝛥𝑁)‖ ∑

𝑁

𝑗=1

∫

𝑡𝑗

𝑡𝑗−1

‖𝜓𝑝(𝑠)‖𝑑𝑠. 

Then, for any 𝜆̂ ∈ 𝑆(𝜆(0), 𝜌𝜆), there exists a unique function system [𝑡, 𝜆̂] =

(𝑣1(𝑡, 𝜆̂), 𝑣2(𝑡, 𝜆̂), … , 𝑣𝑁(𝑡, 𝜆̂)), the solution to the special Cauchy problem (4), (5) 

in 𝑆(0, 𝜌𝑣).  

While solving the special Cauchy problem (4), (5) for fixed values of the 

parameters 𝜆 ∈ ℝ𝑛𝑁, we use iterative processes with damping factors. 



 
 

Given a vector λ(0) = (λ1
(0)

, λ2
(0)

, … , λ𝑁
(0)

) ∈ ℝ𝑛𝑁, a function system 𝑢(0)[𝑡] =

(𝑢1
(0)(𝑡), 𝑢2

(0)(𝑡), … , 𝑢𝑁
(0)(𝑡)) ∈ ℂ([0, 𝑇], Δ𝑁, ℝ𝑛𝑁), and some positive numbers 𝜌, 𝜌𝜆, 

𝜌𝑢, we compose the folowing sets: 

𝑆(𝜆(0), 𝜌𝜆) = {𝜆 = (𝜆1, 𝜆2, … , 𝜆𝑁) ∈ ℝ𝑛𝑁: max
𝑟=1,𝑁

‖𝜆𝑟 − 𝜆𝑟
(0)

‖ < 𝜌𝜆}, 

𝑆(𝑢(0)[𝑡], 𝜌𝑢) = {𝑢[𝑡] ∈ ℂ([0, 𝑇], Δ𝑁, ℝ𝑛𝑁):  ‖𝑢[⋅] − 𝑢(0)[⋅]‖
2

< 𝜌𝑢}, 

𝑆(𝑥0(𝑡), 𝜌) = {𝑥(𝑡) ∈ ℙℂ([0, 𝑇], Δ𝑁, ℝ𝑛): ‖𝑥 − 𝑥0‖5 < 𝜌}, 

𝐺0(𝜌) = {(𝑡, 𝑥): 𝑡 ∈ [0, 𝑇], ‖𝑥 − 𝑥0(𝑡)‖ < 𝜌}, 

𝐺𝑟
0(𝜌) = {(𝑡, 𝑥): 𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟), ||𝑥 − 𝑥0(𝑡)|| < 𝜌},    𝑟 = 1, 𝑁̅̅ ̅̅ ̅}, 

where the function 𝑥0(𝑡) is defined by the equalities 

𝑥0(𝑡) = 𝜆𝑟
(0)

+ 𝑢𝑟
(0)(𝑡),    𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟),    𝑟 = 1, 𝑁̅̅ ̅̅ ̅, 

𝑥0(𝑇) = 𝜆𝑁
(0)

+ lim
𝑡→𝑇−0

𝑢𝑁
(0)(𝑡), 

and belongs to ℙℂ([0, 𝑇], Δ𝑁, ℝ𝑛). 

Condition 2. The function 𝑓(𝑡, 𝑥) has the uniformly continuous partial 

derivative 𝑓𝑥
′(𝑡, 𝑥) in 𝐺0(𝜌). 

We set 𝕏 = {𝑣[𝑡] = (𝑣1(𝑡), 𝑣2(𝑡), … , 𝑣𝑁(𝑡)) ∈ ℂ̃([0, 𝑇], Δ𝑁, ℝ𝑛𝑁):  𝑣𝑟(𝑡𝑟−1) =

0, 𝑟 = 1, 𝑁̅̅ ̅̅ ̅}, 𝕐 = ℂ̃([0, 𝑇], Δ𝑁, ℝ𝑛𝑁), and introduce the linear operator 𝐻: 𝕏 → 𝕐 in 

the following way: 

𝐻𝑣[𝑡] = 𝑤(1)[𝑡], 

where 

𝑤(1)[𝑡] = (𝑤1
(1)(𝑡), 𝑤2

(1)(𝑡), … , 𝑤𝑁
(1)(𝑡)), 

𝑤𝑟
(1)(𝑡) = 𝑣̇𝑟(𝑡) − ∑

𝑚

𝑘=1

𝜑𝑘(𝑡) ∑

𝑁

𝑗=1

∫

𝑡𝑗

𝑡𝑗−1

𝜓𝑘(𝜏)𝑣𝑗(𝜏)𝑑𝜏,    𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟],    𝑟 = 1, 𝑁̅̅ ̅̅ ̅ 

The domain of 𝐻 is 𝐷(𝐻) = {𝑣[𝑡] = (𝑣1(𝑡), 𝑣2(𝑡), … , 𝑣𝑁(𝑡)) ∈ 𝕏, where 𝑣𝑟(𝑡) 

is continuously differentiable on [𝑡𝑟−1, 𝑡𝑟], 𝑟 = 1, 𝑁̅̅ ̅̅ ̅}. 

We can now rewrite the special Cauchy problem (4), (5) with 𝜆 = 𝜆̂ ∈

𝑆(𝜆(0), 𝜌𝜆) in the form of the nonlinear operator equation  

𝐻𝑣[𝑡] + 𝐹(𝑣[𝑡], 𝜆̂) = 0                                                        (6) 

with 

𝐹(𝑣[𝑡], 𝜆̂) = (𝑤1
(2)

(𝑡, 𝜆̂), 𝑤2
(2)

(𝑡, 𝜆̂), … , 𝑤𝑁
(2)

(𝑡, 𝜆̂)), 



 
 

𝑤𝑟
(2)

(𝑡, 𝜆̂) = −𝑓(𝑡, 𝑣𝑟(𝑡) + 𝜆̂𝑟) − ∑

𝑚

𝑘=1

𝜑𝑘(𝑡) ∑

𝑁

𝑗=1

∫

𝑡𝑗

𝑡𝑗−1

𝜓𝑘(𝜏)𝑑𝜏𝜆̂𝑗 , 

𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟],    𝑟 = 1, 𝑁̅̅ ̅̅ ̅. 

Condition 2 guarenties the existence and uniform continuity of the Frechet 

derivative 𝐹′𝑣(𝑣[𝑡], 𝜆̂) in 𝑆(𝑣(0)[𝑡], 𝜌𝑢), which can be written in the form: 

𝐹′𝑣(𝑣[𝑡], 𝜆̂) = 𝑑𝑖𝑎𝑔 {−
𝜕𝑓(𝑡, 𝑣1(𝑡) + 𝜆̂1)

𝜕𝑥
, … , −

𝜕𝑓(𝑡, 𝑣𝑁(𝑡) + 𝜆̂𝑁)

𝜕𝑥
}. 

Let 𝕃(𝕐, 𝕏) be the space of linear bounded operators: Λ: 𝕐 → 𝕏 with the induced 

norm.  

Fix 𝜆̂ ∈ 𝑆(𝜆(0), 𝜌𝜆), 𝑣̂(0)[𝑡] ∈ 𝑆(𝑣(0)[𝑡], 𝜌𝑢) ∩ 𝐷(𝐻), and 𝜌̂𝑢 > 0. 

Theorem 2. Let the following conditions be fulfilled: 

(i) 𝐹′𝑣(𝑣[𝑡], 𝜆̂) is uniformly continuous in 𝑆(𝑣̂(0)[𝑡], 𝜌̂𝑢); 

(ii) the operator 𝐻 + 𝐹′𝑣(𝑣[𝑡], 𝜆̂): 𝕏 → 𝕐 has a bounded inverse and ‖[𝐻 +

𝐹′𝑣(𝑣[𝑡], 𝜆̂)]−1‖
𝕃(𝕐,𝕏)

≤ 𝜒̂ for all 𝑣[𝑡] ∈ 𝑆(𝑣̂(0)[𝑡], 𝜌̂𝑢), 𝜒̂ is constant; 

 (iii) 𝜒̂‖𝐻𝑣̂(0)[⋅] + 𝐹(𝑣̂(0)[⋅], 𝜆̂)‖
3

< 𝜌̂𝑢. 

Then there exist numbers 𝛼𝑘 ≥ 1, 𝑘 = 0, 1, 2, …, such that the sequence 

{𝑣̂(𝑘)[𝑡]}, generated by the iterative process 

𝑣̂(𝑘+1)[𝑡] = 𝑣̂(𝑘)[𝑡] −
1

𝛼𝑘
[𝐻 + 𝐹′𝑣(𝑣̂(𝑘)[𝑡], 𝜆̂)]

−1
× 

× [𝐻𝑣̂(𝑘)[𝑡] + 𝐹(𝑣̂(𝑘)[𝑡], 𝜆̂)],    𝑘 = 0, 1, 2, …, 

converges to 𝑣[𝑡, 𝜆̂], an isolated solution to equation (6) in 𝑆(𝑣̂(0)[𝑡], 𝜌̂𝑢), and the 

following estimate holds: 

‖𝑣[⋅, 𝜆̂] − 𝑣(0)[⋅]‖
3

≤ 𝜒‖𝐻𝑣̂(0)[⋅] + 𝐹(𝑣̂(0)[⋅], 𝜆̂)‖
3

. 

Consider the special Cauchy problem for the system of linear Fredholm integro-

differential equations with parameters 

𝑑𝜗𝑟

𝑑𝑡
= 𝑓𝑥

′(𝑡, 𝑣𝑟(𝑡) + 𝜆̂𝑟)𝜗𝑟 + 

+ ∑

𝑚

𝑘=1

𝜑𝑘(𝑡) ∑

𝑁

𝑗=1

∫

𝑡𝑗

𝑡𝑗−1

𝜓𝑘(𝜏)𝜗𝑗(𝜏)𝑑𝜏 + 𝑔𝑟(𝑡),    𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟],           (7) 

𝜗𝑟(𝑡𝑟−1) = 0,    𝑟 = 1, 𝑁̅̅ ̅̅ ̅.                                          (8) 



 
 

Theorem 1 and the interrelation between the special Cauchy problem (4), (5) 

and operator equation (6) yield the following assertion.  

Theorem 3. Let condition 2 be fulfilled, the special Cauchy problem (7), (8) be 

well-posed with constant 𝜒̂ for all 𝑣[𝑡] ∈ 𝑆(𝑣̂(0)[𝑡], 𝜌̂𝑢), and the following inequality 

be valid: 

𝜒̂𝑚𝑎𝑥
𝑟=1,𝑁

𝑚𝑎𝑥
𝑡∈[𝑡𝑟−1,𝑡𝑟]

‖𝑣̇̂𝑟
(0)(𝑡) − 𝑓 (𝑡, 𝑣̂𝑟

(0)(𝑡) + 𝜆̂𝑟) − 

− ∑

𝑚

𝑘=1

𝜑𝑘(𝑡) ∑

𝑁

𝑗=1

∫

𝑡𝑗

𝑡𝑗−1

𝜓𝑘(𝜏) [𝑣̂𝑗
(0)(𝜏) + 𝜆̂𝑗] 𝑑𝜏‖ < 𝜌̂𝑢. 

Then there exist numbers 𝛼𝑘 ≥ 1, 𝑘 = 0, 1, 2, …, such that the sequence 

{𝑣̂(𝑘)[𝑡]}, generated by the iterative process  

𝑣̂(𝑘+1)[𝑡] = 𝑣̂(𝑘)[𝑡] + 𝛥𝑣(𝑘)[𝑡, 𝜆̂],    𝑘 = 0, 1, 2, …, 

where 𝛥𝑣(𝑘)[𝑡, 𝜆̂] is the solution to the special Cauchy problem for the system of 

linear integro-differential equations with parameters 

𝑑Δ𝑣𝑟

𝑑𝑡
= 𝑓𝑥

′ (𝑡, 𝑣𝑟
(𝑘)

(𝑡, 𝜆̂1, … , 𝜆̂𝑁) + 𝜆̂𝑟) Δ𝑣𝑟 + 

+ ∑

𝑚

𝑘=1

𝜑𝑘(𝑡) ∑

𝑁

𝑗=1

∫

𝑡𝑗

𝑡𝑗−1

𝜓𝑘(𝜏)Δ𝑣𝑗(𝜏)𝑑𝜏 −
1

𝛼𝑘
{𝑣̇𝑟

(𝑘)
(𝑡, 𝜆̂1, … , 𝜆̂𝑁) − 

− ∑

𝑚

𝑘=1

𝜑𝑘(𝑡) ∑

𝑁

𝑗=1

∫

𝑡𝑗

𝑡𝑗−1

𝜓𝑘(𝜏) [𝑣𝑗
(𝑘)

(𝜏, 𝜆̂1, … , 𝜆̂𝑁) + 𝜆̂𝑗] 𝑑𝜏 − 

−𝑓 (𝑡, 𝑣𝑟
(𝑘)

(𝑡, 𝜆̂1, … , 𝜆̂𝑁) + 𝜆̂𝑟)} ,    𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟], 

Δ𝑣𝑟(𝑡𝑟−1, 𝜆̂1, … , 𝜆̂𝑁) = 0,    𝑟 = 1, 𝑁̅̅ ̅̅ ̅, 

converges to 𝑣[𝑡, 𝜆̂], an isolated solution to problem (4), (5) in 𝑆(𝑣̂(0)[𝑡], 𝜌̂𝑢), and  

‖𝑣[⋅, 𝜆̂] − 𝑣̂(0)[⋅]‖
3

≤ 𝜒̂ max
𝑟=1,𝑁

max
𝑡∈[𝑡𝑟−1,𝑡𝑟]

‖𝑣̂𝑟
(0)(𝑡) − 𝑓 (𝑡, 𝑣̂𝑟

(0)(𝑡) + 𝜆̂𝑟) − 

− ∑

𝑚

𝑘=1

𝜑𝑘(𝑡) ∑

𝑁

𝑗=1

∫

𝑡𝑗

𝑡𝑗−1

𝜓𝑘(𝜏) [𝑣̂𝑗
(0)(𝜏) + 𝜆̂𝑗] 𝑑𝜏‖. 

In the second Section, by using the solution to the special Cauchy problem (4), 

(5), a general solution to equation (1) is constructed, and its properties are 



 
 

established. Taking into account the relationship between the special Cauchy 

problems (2), (3) and (4), (5), we give the following definition. 

Definition 1. Let the function system 𝑣[𝑡, 𝜆] = (𝑣1(𝑡, 𝜆), 𝑣2(𝑡, 𝜆), … , 𝑣𝑁(𝑡, 𝜆)) ∈

𝑆(0, 𝜌𝑣) be a solution to the special Cauchy problem (4), (5) with the parameter 

(𝜆1, 𝜆2, . . . , 𝜆𝑁) ∈ 𝑆(𝜆(0), 𝜌𝜆). Then the function 𝑥(𝛥𝑁, 𝑡, 𝜆), given by the equalities 

𝑥(𝛥𝑁, 𝑡, 𝜆) = 𝜆𝑟 + 𝑣𝑟(𝑡, 𝜆) for 𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟), 𝑟 = 1, 𝑁̅̅ ̅̅ ̅, and 𝑥(𝛥𝑁, 𝑇, 𝜆) = 𝜆𝑁 +

𝑣𝑁(𝑇, 𝜆), is called a  𝛥𝑁 general solution to equation (1)  in 𝐺0(𝛥𝑁, 𝜌). 

Theorem 4. Let a piecewise continuous on [0, 𝑇] function 𝑥̃(𝑡)  with the 

possible discontinuity points 𝑡 = 𝑡𝑝, 𝑝 = 1, 𝑁 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , be given, and (𝑡, 𝑥̃(𝑡)) ∈

𝐺0(𝛥𝑁, 𝜌). Assume that the function 𝑥̃(𝑡) has a continuous derivative and satisfies 

equation (1) for all 𝑡 ∈ (0, 𝑇)\{𝑡𝑝, 𝑝 = 1, 𝑁 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ }. Then there exists a unique 𝜆̃ =

(𝜆̃1, 𝜆̃2, … , 𝜆̃𝑁) ∈ 𝑆(𝜆(0), 𝜌𝜆), such that the equality (𝛥𝑁, 𝑡, 𝜆∗) = 𝑥∗(𝑡) holds for all 

𝑡 ∈ [0, 𝑇]. 

Corollary 1. Let 𝑥∗(𝑡)  be a solution to equation (1), and (𝑡, 𝑥∗(𝑡)) ∈

𝐺0(𝛥𝑁, 𝜌). Then there exists a unique 𝜆∗ = (𝜆1
∗ , 𝜆2

∗ , … , 𝜆𝑁
∗ ) ∈ 𝑆(𝜆(0), 𝜌𝜆), such that 

the equality 𝑥(𝛥𝑁, 𝑡, 𝜆∗) = 𝑥∗(𝑡) holds for all 𝑡 ∈ [0, 𝑇]. 

The nonlinear boundary value problem for the Fredholm integro-differential 

equation (1) with the boundary condition 

𝑔[𝑥(0), 𝑥(𝑇)] = 0                                                       (10) 

is considered. 

The Δ𝑁 general solution to equation (1) allows us to reduce the solvability of 

boundary value problem (1), (10) to the solvability of the system of nonlinear 

algebraic equations in parameters  

𝑄∗(Δ𝑁; 𝜆) = 0,    𝜆 ∈ ℝ𝑛𝑁.                                        (11) 

Theorem 5. Let the function 𝑥∗(𝑡) be a solution to problem (1), (10) and 

(𝑡, 𝑥∗(𝑡)) ∈ 𝐺0(𝛥𝑁, 𝜌). Then the vector 𝜆∗ = (𝜆1
∗ , 𝜆2

∗ , … , 𝜆𝑁
∗ ) ∈ 𝑆(𝜆(0), 𝜌𝜆) with 

elements 𝜆𝑟
∗ = 𝑥∗(𝑡𝑟−1), 𝑟 = 1, 𝑁̅̅ ̅̅ ̅, is a solution to equation (11). Vice versa, if 𝜆̃ =

(𝜆̃1, 𝜆̃2, … , 𝜆̃𝑁) ∈ 𝑆(𝜆(0), 𝜌𝜆) is a solution to equation (11), then the function 𝑥̃(𝑡) =

𝑥(𝛥𝑁, 𝑡, 𝜆) is a solution to problem (1), (10) and (𝑡, 𝑥̃(𝑡)) ∈ 𝐺0(𝛥𝑁, 𝜌). 

To solve the system of nonlinear algebraic equations (11), we use the following 

statement. 

Theorem 6. Let the following conditions be fulfilled: 

(𝑖) the Jacobi matrix 
𝜕𝑄∗(𝛥𝑁;𝜆)

𝜕𝜆
 is uniformly continuous in 𝑆(𝜆(0), 𝜌𝜆); 



 
 

(𝑖𝑖) 
𝜕𝑄∗(𝛥𝑁;𝜆)

𝜕𝜆
 is invertible and ‖[

𝜕𝑄∗(𝛥𝑁;𝜆) 

𝜕𝜆
]

−1

‖ ≤ 𝛾∗  for all 𝜆 ∈ 𝑆(𝜆(0), 𝜌𝜆), 𝛾∗ 

constant; 

(𝑖𝑖𝑖) 𝛾∗‖𝑄∗(𝛥𝑁; 𝜆(0))‖ < 𝜌𝜆. 

Then there exists 𝛼0 ≥ 1 such that for any 𝛼 ≥ 𝛼0 the sequence 𝛼 ≥ 𝛼0 

generated by the iterative process 

𝜆(𝑘+1) = 𝜆(𝑘) −
1

𝛼
[
𝜕𝑄∗(Δ𝑁; 𝜆(𝑘))

𝜕𝜆
]

−1

𝑄∗(Δ𝑁; 𝜆(𝑘)),    𝑘 = 0, 1, 2, …,  

converges to 𝜆∗, an isolated solution to equation (11) in 𝑆(𝜆(0), 𝜌𝜆) and 

‖𝜆∗ − 𝜆(0)‖ ≤ 𝛾∗‖𝑄∗(𝛥𝑁; 𝜆(0))‖. 

This section also discusses the quasilinear Fredholm integro-differential 

equation 

𝑑𝑥

𝑑𝑡
= 𝐴(𝑡)𝑥 + ∑

𝑚

𝑘=1

𝜑𝑘(𝑡) ∫

𝑇

0

𝜓𝑘(𝜏)𝑥(𝜏)𝑑𝜏 + 𝑓0(𝑡) + 𝜀𝑓(𝑡, 𝑥),             (12) 

Applying the parametrization method to equation (12) for the Δ𝑁 partition, we 

obtain the special Cauchy problem with parameters of the form 

𝑑𝑢𝑟

𝑑𝑡
 = 𝐴(𝑡)(𝑢𝑟 + 𝜆𝑟) + ∑

𝑚

𝑘=1

𝜑𝑘(𝑡) ∑

𝑁

𝑗=1

∫

𝑡𝑗

𝑡𝑗−1

𝜓𝑘(𝜏)[𝑢𝑗(𝜏) + 𝜆𝑗]𝑑𝜏 + 𝑓0(𝑡) + 

+𝜀𝑓(𝑡, 𝑢𝑟 + 𝜆𝑟),    𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟),                                     (13) 

𝑢𝑟(𝑡𝑟−1) = 0,    𝑟 = 1, 𝑁̅̅ ̅̅ ̅.                                           (14) 

Let 𝑦(Δ𝑁, 𝑡, 𝜆) be the Δ𝑁 general solution to the linear integro-differential 

equation  

𝑑𝑦

𝑑𝑡
= 𝐴(𝑡)𝑦 + ∑

𝑚

𝑘=1

𝜑𝑘(𝑡) ∫

𝑇

0

𝜓𝑘(𝜏)𝑦(𝜏)𝑑𝜏 + 𝑓0(𝑡),    𝑡 ∈ [0, 𝑇],    𝑦 ∈ ℝ𝑛.     (15) 

Equation (15) is reduced to the special Cauchy problem  

𝑑𝑣𝑟

𝑑𝑡
 = 𝐴(𝑡)(𝑣𝑟 + 𝜆𝑟) + ∑

𝑚

𝑘=1

𝜑𝑘(𝑡) ∑

𝑁

𝑗=1

∫

𝑡𝑗

𝑡𝑗−1

𝜓𝑘(𝜏)[𝑣𝑗(𝜏) + 𝜆𝑗]𝑑𝜏 + 

    +𝑓0(𝑡),           𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟),                                     (16) 

𝑢𝑟(𝑡𝑟−1) = 0,    𝑟 = 1, 𝑁̅̅ ̅̅ ̅.                                         17) 



 
 

Given a vector 𝜆(0) = (𝜆1
(0)

, 𝜆2
(0)

, … , 𝜆𝑁
(0)

) ∈ ℝ𝑛𝑁 and numbers 𝜌𝜆 > 0, 𝜌 > 𝜌𝜆, 

𝜌𝑣 = 𝜌 − 𝜌𝜆, we choose the piecewise continuous on [0, 𝑇] function 𝑦(0)(𝑡) =

𝑦(Δ𝑁, 𝑡, 𝜆(0)) the function system 𝑣(0)[𝑡] = (𝑣1
(0)(𝑡), 𝑣2

(0)(𝑡), … , 𝑣𝑁
(0)(𝑡)) with 

elements 𝑣𝑟
(0)(𝑡) = 𝑦(0)(𝑡) − 𝜆𝑟

(0)
, 𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟), 𝑟 = 1, 𝑁̅̅ ̅̅ ̅, and compose the 

following sets: 

𝐺0(𝜌) = {(𝑡, 𝑥): 𝑡 ∈ [0, 𝑇], ‖𝑥 − 𝑦(0)(𝑡)‖ < 𝜌}, 

𝑆(𝜆(0), 𝜌𝜆) = {𝜆 = (𝜆1, 𝜆2, … , 𝜆𝑁) ∈ ℝ𝑛𝑁: ‖𝜆𝑟 − 𝜆𝑟
(0)

‖ < 𝜌𝜆,    𝑟 = 1, 𝑁̅̅ ̅̅ ̅}, 

𝑆(𝑣(0)[𝑡], 𝜌𝑣) = {𝑢[𝑡] ∈ ℂ([0, 𝑇], Δ𝑁, ℝ𝑛𝑁): ‖𝑢[⋅] − 𝑣(0)[⋅]‖
2

< 𝜌𝑣}, 

𝐺𝑝
0(𝜌) = {(𝑡, 𝑥): 𝑡 ∈ [𝑡𝑝−1, 𝑡𝑝), ‖𝑥 − 𝑦(0)(𝑡)‖ < 𝜌},    𝑝 = 1, 𝑁 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 

𝐺𝑁
0 (𝜌) = {(𝑡, 𝑥): 𝑡 ∈ [𝑡𝑁−1, 𝑡𝑁], ‖𝑥 − 𝑦(0)(𝑡)‖ < 𝜌}, and 

𝐺0(Δ𝑁, 𝜌) = ⋃

𝑁

𝑟=1

𝐺𝑟
0(𝜌). 

We represent problem (13), (14) as an operator equation and apply an iterative 

process for finding its solution. We introduce a linear operator 𝐻: 𝕏 → 𝕐 in the 

following way: 

𝐻𝑢[𝑡] = (𝑤1
(1)(𝑡), 𝑤2

(1)(𝑡), … , 𝑤𝑁
(1)(𝑡)), 

where 

𝑤𝑟
(1)(𝑡) = 𝑢̇𝑟(𝑡) − 𝐴(𝑡)𝑢𝑟 − ∑

𝑚

𝑘=1

𝜑𝑘(𝑡) ∑

𝑁

𝑗=1

∫

𝑡𝑗

𝑡𝑗−1

𝜓𝑘(𝜏)𝑢𝑗(𝜏)𝑑𝜏, 

𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟), 𝑟 = 1, 𝑁̅̅ ̅̅ ̅. 

We can now write down the special Cauchy problem (13), (14) in the form of 

the nonlinear operator equation 

𝐻𝑢[𝑡] = 𝜀𝐹(𝑢[𝑡], 𝜆) + 𝐹0[𝑡, 𝜆], 

where 

𝐹(𝑢[𝑡], 𝜆) = (𝑤1
(2)(𝑡), 𝑤2

(2)(𝑡), … , 𝑤𝑁
(2)(𝑡)), 

𝑤𝑟
(2)(𝑡) = 𝑓(𝑡, 𝑢𝑟(𝑡) + 𝜆𝑟),    𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟),    𝑟 = 1, 𝑁̅̅ ̅̅ ̅. 

Theorem 7. Let the special Cauchy problem (16), (17) be well-posed with a 

constant 𝜒 and the following inequalities be valid: 

(i) ‖𝑓(𝑡, 𝑥′) − 𝑓(𝑡, 𝑥′′)‖ ≤ 𝐿 ∥ 𝑥′ − 𝑥′′ ∥, 𝐿 is constant., (𝑡, 𝑥′), (𝑡, 𝑥′′) ∈ 𝐺0(𝜌); 

(ii) 𝑞𝜀 = 𝜀𝜒𝐿 < 1; 



 
 

(iii) 
1

1−𝑞𝜀
𝜀𝜒 max

𝑟=1,𝑁
𝑠𝑢𝑝

𝑡∈[𝑡𝑟−1,𝑡𝑟)
‖𝑓(𝑡, 𝑣𝑟(𝑡, 𝜆) + 𝜆𝑟)‖ < 𝜌𝑣 for all 𝜆 ∈ 𝑆(𝜆(0), 𝜌𝜆). 

Then for any 𝜆 ∈ 𝑆(𝜆(0), 𝜌𝜆) there exists a unique function system 𝑢[𝑡, 𝜆, 𝜀] =

(𝑢1(𝑡, 𝜆, 𝜀), 𝑢2(𝑡, 𝜆, 𝜀), … , 𝑢𝑁(𝑡, 𝜆, 𝜀)), the solution to the special Cauchy problem 

(13), (14) belonging to 𝑆(𝑣(0)[𝑡], 𝜌𝑣) and the following inequality is true: 

‖𝑢[⋅, 𝜆, 𝜀] − 𝑣[⋅, 𝜆]‖2 ≤
1

1 − 𝑞𝜀
𝜀𝜒𝑚𝑎𝑥

𝑟=1,𝑁
𝑠𝑢𝑝

𝑡∈[𝑡𝑟−1,𝑡𝑟)
‖𝑓(𝑡, 𝑣𝑟(𝑡, 𝜆) + 𝜆𝑟)‖. 

Definition 2. Let a function system 𝑢[𝑡, 𝜆, 𝜀] =

(𝑢1(𝑡, 𝜆, 𝜀), 𝑢2(𝑡, 𝜆, 𝜀), … , 𝑢𝑁(𝑡, 𝜆, 𝜀)) ∈ 𝑆(𝑣[𝑡, 𝜆], 𝜌𝑣) be the unique solution to the 

special Cauchy problem (13), (14) with the parameter 𝜆 = (𝜆1, 𝜆2, … , 𝜆𝑁) ∈

𝑆(𝜆(0), 𝜌𝜆). Then the function 𝑥(𝛥𝑁, 𝑡, 𝜆, 𝜀), given by the equalities 

𝑥(𝛥𝑁, 𝑡, 𝜆, 𝜀) = 𝜆𝑟 + 𝑢𝑟(𝑡, 𝜆, 𝜀) for 𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟), 𝑟 = 1, 𝑁̅̅ ̅̅ ̅, and 

𝑥(𝛥𝑁, 𝑇, 𝜆, 𝜀) = 𝜆𝑁 + lim
𝑡→𝑇−0

𝑢𝑁(𝑡, 𝜆, 𝜀) 

is said to be a 𝛥𝑁 general solution to equation (12) in 𝐺0(𝛥𝑁, 𝜌). 

Definition 2 and theorem 7 imply the following assertion. 

Theorem 8. Under conditions of Theorem 7, there exists a function 

𝑥(𝛥𝑁, 𝑡, 𝜆, 𝜀), which is a unique 𝛥𝑁 general solution to equation (12) in 𝐺0(𝛥𝑁, 𝜌), 

and this function can be represented in the form 

𝑥(𝛥𝑁, 𝑡, 𝜆, 𝜀) = 𝑦(𝛥𝑁, 𝑡, 𝜆) + 𝛥𝑥(𝛥𝑁, 𝑡, 𝜆, 𝜀), 

where the function 𝛥𝑥(𝛥𝑁, 𝑡, 𝜆, 𝜀) is compiled by the equalities 

𝛥𝑥(𝛥𝑁, 𝑡, 𝜆, 𝜀) = 𝑢𝑟(𝑡, 𝜆, 𝜀) − 𝑣𝑟(𝑡, 𝜆), for 𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟), 𝑟 = 1, 𝑁̅̅ ̅̅ ̅, 

𝛥𝑥(𝛥𝑁, 𝑇, 𝜆, 𝜀) = 𝑙𝑖𝑚
𝑡→𝑇−0

𝑢𝑁(𝑡, 𝜆, 𝜀) − 𝑙𝑖𝑚
𝑡→𝑇−0

𝑣𝑁(𝑡, 𝜆). 

Moreover, the following estimate is valid: 

𝑠𝑢𝑝
𝑡∈[0,𝑇)

‖𝛥𝑥(𝛥𝑁, 𝑡, 𝜆, 𝜀)‖ ≤
1

1 − 𝑞𝜀
𝜀𝜒𝑚𝑎𝑥

𝑟=1,𝑁
𝑠𝑢𝑝

𝑡∈[𝑡𝑟−1,𝑡𝑟)
‖𝑓(𝑡, 𝑣𝑟(𝑡, 𝜆) + 𝜆𝑟)‖. 

In Subsection 2.4, we study the solvability of the quasilinear boundary value 

problem for the Fredholm integro-differential equation 

𝑑𝑥

𝑑𝑡
= 𝐴(𝑡)𝑥 + ∑

𝑚

𝑘=1

𝜑𝑘(𝑡) ∫
𝑇

0

𝜓𝑘(𝜏)𝑥(𝜏)𝑑𝜏 + 𝑓0(𝑡) + 𝜀𝑓(𝑡, 𝑥),    𝑡 ∈ [0, 𝑇],    𝑥 ∈ ℝ𝑛, 

𝐵𝑥(0) + 𝐶𝑥(𝑇) = 𝑑,    𝑑 ∈ ℝ𝑛. 

Section 3 is devoted to the development of an algorithm for finding a solution to 

the nonlinear boundary value problem for the integro-differential equation. 

In Subsection 3.1, we consider the special Cauchy problem for the systems of 

nonlinear integro-differential equations  



 
 

𝑑𝑢𝑟

𝑑𝑡
= 𝑓0(𝑡, 𝑢𝑟 + 𝜆𝑟) + ∑

𝑁

𝑗=1

∫

𝑗ℎ

(𝑗−1)ℎ

𝑓1(𝑡, 𝑠, 𝑢𝑗(𝑠) + 𝜆𝑗)𝑑𝑠,    𝑡 ∈ [(𝑟 − 1)ℎ, 𝑟ℎ),   (18) 

𝑢𝑟[(𝑟 − 1)ℎ] = 0,    𝑟 = 1, 𝑁̅̅ ̅̅ ̅,                                     (19) 

which arises while applying the parameterization method to the system of nonlinear 

Fredholm integro-differential equations  

𝑑𝑥

𝑑𝑡
= 𝑓0(𝑡, 𝑥) + ∫

𝑇

0

𝑓1(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠,    𝑡 ∈ [0, 𝑇],    𝑥 ∈ ℝ𝑛. 

An algorithm for finding a numerical solution to the problem (18), (19) is 

developed. 

This subsection also offers an algorithm for finding a numerical solution to the 

special Cauchy problem for the systems of nonlinear integro-differential equations 

with nonlinear differential part 

𝑑𝑣𝑟

𝑑𝑡
= 𝑓(𝑡, 𝑣𝑟 + 𝜆𝑟) + ∑

𝑚

𝑘=1

𝜑𝑘(𝑡) ∑

𝑁

𝑗=1

∫

𝑡𝑗

𝑡𝑗−1

𝜓𝑘(𝜏)[𝑣𝑗(𝜏) + 𝜆𝑗]𝑑𝜏,    𝑡 ∈ [𝑡𝑟−1, 𝑡𝑟], 

𝑣𝑟(𝑡𝑟−1) = 0,    𝑟 = 1, 𝑁̅̅ ̅̅ ̅. 

Theorem 2 provides the convergence of the proposed algorithm. 

In Subsection 3.2, an algorithm for finding a solution to the nonlinear boundary 

value problem for the Fredholm integro-differential equation (1), (10) is developed. 

In Subsection 3.3, based on the parameter continuation method , one approach to 

solving the problem of choosing the initial guess solutions to the special Cauchy 

problem (4), (5) and systems of nonlinear algebraic equations (11) is proposed.  

Since  

∫

𝑡

0

𝜑(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠 = ∫

𝑇

0

𝜑̃(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠, 

where 

𝜑̃(𝑡, 𝑠, 𝑥(𝑠)) = (
𝜑(𝑡, 𝑠, 𝑥(𝑠)),    𝑎 ≤ 𝑠 ≤ 𝑡,

0,    𝑡 < 𝑠 ≤ 𝑏,
 

then the Volterra integro-differential equation  

𝑥̇ = 𝜀𝑋 (𝑡, 𝑥, ∫

𝑡

0

𝜑(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠) 

is a particular case of the Fredholm integro-differential equation 



 
 

𝑥̇ = 𝜀𝑋 (𝑡, 𝑥, ∫

𝑇

0

𝜑̃(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠). 

In this connection, in Subsection 3.4, the averaging method is applied to the 

study of the existence of solutions to the boundary value problems for the systems of 

Volterra integro-differential equations. It is shown that if the average boundary value 

problem has a solution, then the original problem also has a solution. It is important 

that the average for a system of integro-differential equations is a simpler system of 

ordinary differential equations. 

Thus, the dissertation work investigates the solvability of nonlinear boundary 

value problems for the integro-differential equations and offers following new 

scientific results: 

- sufficient conditions for the existence of solutions to the special Cauchy 

problem for the systems of nonlinear integro-differential equations with parameters 

are obtained; 

- iterative methods for solving the special Cauchy problem for the systems of 

nonlinear integro-differential equations with parameters and their 

numericalimplementations are proposed;\ 

- the Δ𝑁 general solution to the Fredholm integro-differential equation with 

nonlinear differential part is constructed and its properties are established; 

- the parameterization method is extended for solving the nonlinear boundary 

value problem for the Fredholm integro-differential equation; 

- algorithms for solving the nonlinear boundary value problems for the Fredholm 

integro-differential equations and their numerical implementations are developed; 

- sufficient conditions for the existence of an isolated solution to a nonlinear 

boundary value problem for the Fredholm integro-differential equation are 

established; 

- a system of nonlinear algebraic equations in parameters for the boundary value 

problem for the Fredholm integro-differential equation with nonlinear differential 

part is constructed and an algorithm for finding its solution is proposed; 

- algorithms for finding initial guess solutions to the nonlinear special Cauchy 

problem and constructed system of nonlinear algebraic equations are developed; 

- the averaging method is applied to the study of the existence of solutions to the 

initial and boundary value problems for the nonlinear Volterra integro-differential 

equation. 

 


