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DESIGNATIONS AND ABBREVIATIONS 
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INTRODUCTION 

 

The thesis researches. The thesis is devoted to the study of the unpredictable 

solutions of differential equations and unpredictable oscillations of neural networks. 

Actuality of the thesis. The actuality of the thesis is due to the numerous 

applications of differential equations in solving problems of natural science and the 

widespread use of neural networks in the modern world. The thesis is based on the 

concepts of unpredictable functions, which were introduced by M. Akhmet and             

M.O. Fen [1-4]. We proved the existence of unpredictable solutions of differential 

equations, and unpredictable oscillations of neural networks.  

The main results of the thesis have been published in peer reviewed journals, 

which confirms the actuality of the research. 

Preliminaries. Oscillations are necessary attribute of various processes 

occurring in nature [5-12]. Of exceptional theoretical and practical importance are the 

oscillatory motions described by differential equations. In the literature a large 

number of results have been obtained for periodic, quasiperiodic, and almost periodic 

solutions of differential equations due to the established mathematical methods and 

important applications [13-17]. On the other hand, recurrent and Poisson stable 

solutions are also crucial for the theory of differential equations [18-24].  

The founders of the theory of non-linear oscillations are H. Poincare [25, 26] 

and A.M. Lyapunov [27], who created a mathematical apparatus suitable for the 

study of nonlinear systems. The theory of non-linear dynamics focused mainly on 

periodic motions. The first functions which can be considered still as “periodic” and 

sufficiently determined for strict mathematical analysis were quasiperiodic functions 

introduced and investigated by P. Bohl [28, 29] and E. Esclangon [30] independently. 

The fundamental papers of H. Bohr [31-33] provided the theory of almost periodic 

functions, which we call as H. Bohr almost periodic functions nowadays. Then 

different approaches to almost periodicity were found by N.N. Bogolyubov [34],        

A.S. Besicovitch [35], S. Bochner [36], V.V. Stepanov [37], and others. The almost 

periodic functions are of great importance for development of harmonic analysis on 

groups, Fourier series and integrals on groups. The paper [38] published by                           

S. Bochner provided extension of the theory of almost periodic functions with values 

in a Banach space. The first paper on the existence of almost periodic solutions was 

written by H. Bohr and O. Neugebauer [39], and nowadays the theory of almost 

periodic equations has been developed in connection with problems of differential 

equations, stability theory, and dynamical systems. The list of the applications of the 

theory has been essentially extended and includes not only ordinary differential 

equations and classical dynamical systems, but also wide classes of partial 

differential equations and equations in Banach spaces [40]. The concepts of recurrent 

motions and Poisson stable points are classical notions central to the qualitative 

theory of motions for dynamical systems. Poisson stable points was considered by H. 

Poincare as the main element in the description of complexity in celestial dynamics. 

The foundation of the research of non-linear oscillations in Kazakhstan were 

laid by V.H. Kharasakhal [41] and O.A. Zhautykov [42, 43]. D.U. Umbetzhanov and 
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his colleagues, intensively investigated almost periodic and multi-periodic solutions 

for differential and evolution systems [44-49]. Nowadays, Kazakhstan 

mathematicians continue to make significant contribution to the analysis of 

oscillations [50-53]. 

In recent decades, researchers have focused on studying oscillations in neural 

networks. Neural networks were created to study brain activity. There are many 

models of neural networks, which mathematically described by recurrent and 

differential equations. For example, Hopfield type neural networks, shunting 

inhibitory cellular neural networks, Cohen-Grossberg neural networks, inertial neural 

networks are investigated. 

Oscillatory neural networks are effective for image recognition [54], and in 

activating network states associated with memory recall [55]. It is natural that neural 

oscillations became the core of interdisciplinary research that unites neuroscience, 

psychophysics, biophysics, cognitive psychology, and computational modeling                  

[56-65]. 

This is why, many researchers are studying periodic, almost periodic, and 

exponential stability for neural networks considering the input-output mechanism 

[66-71]. 

Recently, study of chaotic oscillations in neural networks starts to be of 

significant interest [72-75]. Solutions of the chaotic systems are irregular, and this is 

reflected by data related to experiments and observations [76-81]. 

A few years ago, M. Akhmet and M.O. Fen introduced the concepts of 

unpredictable points and unpredictable functions and thereby significantly expanded 

the boundaries of the classical theory of dynamical systems, founded by H. Poincare 

and G. Birkhoff [82]. An unpredictable point is a modernization of the Poisson stable 

point. In paper, it was proved that the quasi-minimal set is chaotic set, if the Poisson 

stable point also admit the unpredictability property. Thus, the presence of chaos in a 

dynamic system is determined by the presence of only one point - unpredictable. 

Unpredictable functions were defined as unpredictable points in the Bebutov 

dynamical system with the only difference that the topology of convergence on 

compact sets of the real axis is used instead of the metric space. The use of such 

convergence makes it possible to significantly simplify the problem of proving the 

existence of unpredictable solutions for differential equations. And one can 

completely remain in the field of the theory of differential equations without 

mentioning the original or related results in the theory of dynamical systems or chaos. 

The unpredictable points are used by A. Miller [83], R. Thakur and R. Das [84] 

in topological spaces where they considered Poincare chaos, strongly Ruelle-Takens 

chaos, and strongly Auslander-York chaos. 

The goal of this study. The goal of the thesis is to use the method and 

theoretical basis laid down in the articles by M. Akhmet and M.O. Fen, to prove that 

linear and quasilinear differential equations admit unpredictable solutions. Moreover, 

research the existence of unpredictable oscillations for SICNNs and INNs. 

The research problems. The main tasks of the study are as follows: 
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a) the existence and uniqueness of stable unpredictable solutions for linear and 

quasilinear ordinary differential equations; 

b) the existence, uniqueness and asymptotic stability of unpredictable and 

strongly unpredictable oscillations in neural networks; 

c) examples and numerical simulations confirming the validity of the 

theoretical results.  

The objective of the research. The main objective is the unpredictable 

oscillations of differential equations and neural networks. 

The subject of the study. The subject of the research is the existence and 

uniqueness of asymptotically stable unpredictable and strongly unpredictable 

solutions of differential equations and neural networks. 

The scientific novelties. The novelties of the thesis are as follows: 

a) the existence and uniqueness of asymptotically stable unpredictable and 

strongly unpredictable solutions of differential equations; 

c) the existence of asymptotically stable unpredictable and strongly 

unpredictable oscillations of the neural networks; 

d) examples and numerical simulations confirming the feasibility of the 

theoretical results. 

The results of the thesis which are taken out on defense:  

– the theorem on the existence and uniqueness of uniformly asymptotically 

stable unpredictable solutions of ordinary linear differential equations; 

– the theorem on the existence and uniqueness of uniformly exponentially 

stable unpredictable solutions of ordinary quasilinear differential equations; 

– the theorem on the existence of uniformly exponentially stable unpredictable 

solutions of SICNNs; 

– the theorem on the existence and uniqueness of asymptotically stable 

strongly unpredictable unpredictable solutions of SICNNs; 

– the theorem on the existence and uniqueness of asymptotically stable 

unpredictable solutions of INNs; 

– the ways to construction unpredictable functions. 

The reliability and validity. In the thesis, methods and results of the theory of 

functional analysis, algebra and differential equations are widely used. 

The theoretical and practical significance of the results. The scientific 

significance of the research lies in the fact that the results will become the basis for 

the study of unpredictable oscillations for different types of differential equations, 

such as, impulsive differential equations, partial differential equations and others. The 

control of unpredictable oscillations will allow them to be used in medicine, biology, 

cryptography and many other fields. 

The relation of thesis to other research. The thesis was carried out as part of 

the grant research project of the Ministry of Education and Science of the Republic of 

Kazakhstan on fundamental investigations in the field of natural sciences «Cellular 

neural networks with continuous/discrete time and singular perturbations» (No. AP 

05132573, 2018-2020).  
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The personal contribution of the author. All the results of the thesis are 

obtained by the author. The participation of co-authors and scientific consultants 

consists in setting goals and discussing the results. 

Approbation of the received results. The main results of the thesis were 

reported and discussed at the following events: 

– VIII International Scientific Conference «Problems of Differential Equations, 

Analysis and Algebra» (Aktobe, Kazakhstan, November 1, 2018); 

– V International Research Symposium on the Turkic World (Almaty, 

Kazakhstan, October 11-13, 2018); 

– IV International Scientific and Practical Conference "Computer Science and 

Applied Mathematics" (Almaty, Kazakhstan, September 25-28, 2019); 

– 11th International Conference on Information Management and Engineering 

(ICIME 2019) (London, UK, September 16-18, 2019). 

Publications. On the topic of the dissertation, 11 articles were published, 

including 5 publication in a ranking scientific journal indexed in the Scopus database, 

2 publications in scientific journals included in the list recommended by the 

Committee for Control in the Sphere of Education and Science (formerly CCSES) of 

the Ministry of Education and Science of the Republic of Kazakhstan for publication 

of the main scientific results of scientific activities, 4 publications in the materials of 

the international conferences, including 1 publication in the materials of a foreign 

conference indexed in the database Scopus. 

Structure and thesis volume. The thesis consists of introduction, 2 chapters, 

conclusion and list of references from 112 publications. The numbering of formulas, 

theorems and definitions is three-digit: the first number means the number of the 

chapter, the second is the number of the section, the third is the own number of the 

formula, theorem, definition inside the section. The thesis is set out on 77 pages. 

 

Summary of work. 

The chapter 1 devoted to unpredictable solutions of differential equations. In 

the first section the basic definitions of unpredictable functions are presented.  

Definition 0.1. [4, р. 658] A uniformly continuous and bounded function 

𝜗: ℝ → ℝ𝑝 is unpredictable if there exist positive numbers 𝜀0, 𝛿 and sequences 

{𝑡𝑛}, {𝑢𝑛} both of which diverge to infinity such that ‖𝜗(𝑡 + 𝑡𝑛) − 𝜗(𝑡)‖ → 0 as  
𝑛 → ∞ uniformly on compact subsets of ℝ and ‖𝜗(𝑡 + 𝑡𝑛) − 𝜗(𝑡)‖ ≥ 𝜀0 for each 

𝑡 ∈ [𝑢𝑛 − 𝛿, 𝑢𝑛 + 𝛿] and 𝑛 ∈ ℕ. 

The convergence of the sequence 𝜗(𝑡 + 𝑡𝑛) is said to be Poisson stability of 

the unpredictable function or simply Poisson stability as well as existence of the 

numbers 𝜀0, 𝛿 and the sequence 𝑢𝑛 is allow the unpredictable property of the 

unpredictable function.  

The Definition 0.1 implies that some coordinates may not be unpredictable 

scalar valued functions. That is why, it is of great importance for applications to 

consider motions which are unpredictable in all state dimensions, that is strongly 

unpredictable functions. 

Definition 0.2. A uniformly continuous and bounded function 𝑣: ℝ → ℝ𝑝,  
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𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑝), is strongly unpredictable if there exist positive numbers 𝜀0, 𝛿 and 

sequences {𝑡𝑛}, {𝑢𝑛}, both of which diverge to infinity such that 𝑣(𝑡 + 𝑡𝑛) → 𝑣(𝑡) as 

𝑛 → ∞ uniformly on compact sets of ℝ and |𝑣𝑖(𝑡 + 𝑡𝑛) − 𝑣𝑖(𝑡)| ≥ 𝜀0 for all  

𝑖 = 1,2. . . , 𝑝, 𝑡 ∈ [𝑢𝑛 − 𝛿, 𝑢𝑛 + 𝛿], and 𝑛 ∈ ℕ . 
The properties of unpredictable functions are given. The example of the 

unpredictable function is constructed.  

In the second section proved the existence of uniformly asymptotically stable 

unpredictable solution of linear differential equations: 

 

𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝑔(𝑡),                                                (0.1) 

 

where 𝑥 ∈ ℝ𝑝 and 𝑔: ℝ → ℝ𝑝 is an unpredictable function. All eigenvalues of the 

constant matrix 𝐴 ∈ ℝ𝑝×𝑝 have nonzero real parts. 

The main object of the third section is the system of quasilinear differential 

equations:  

 

                                     𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝑓(𝑥(𝑡)) + 𝑔(𝑡),                               (0.2)                    

 

where 𝑥(𝑡) ∈ ℝ𝑝, p is a fixed natural number, the function 𝑓: ℝ𝑝 → ℝ𝑝 is continuous 

in all of its arguments, and all eigenvalues of the constant matrix 𝐴 ∈ ℝ𝑝×𝑝 have 

nonzero real parts. Moreover, the function 𝑔: ℝ → ℝ𝑝 is unpredictable.  

It is known that one can find a regular p× p matrix B such that the 

transformation  𝑥 = 𝐵𝑦 reduces the system (0.2) to the system:  

 

    𝑦′(𝑡) = 𝐶𝑦(𝑡) + 𝐹(𝑦) + 𝐺(𝑡),                                  (0.3)  

   

where 𝐶 = 𝐵−1𝐴𝐵, 𝐹(𝑦) = 𝐵−1𝑓(𝐵𝑦), and 𝐺(𝑡) = 𝐵−1𝑔(𝑡). In system (0.3), the 

matrix 𝐶 is of the form diag(𝐶_, 𝐶+),  where the eigenvalues of the 𝑞 × 𝑞 matrix 𝐶_ 

and (𝑝 − 𝑞) × (𝑝 − 𝑞) matrix 𝐶+ respectively have negative and positive real parts. 

One can confirm that there exist numbers 𝐾 ≥ 1 and 𝛼 > 0 such that  

||𝑒𝐶_𝑡|| ≤ 𝐾𝑒−𝛼𝑡 for all 𝑡 ≥ 0 and ||𝑒𝐶+𝑡|| ≤ 𝐾𝑒𝛼𝑡 for all 𝑡 ≤ 0. 

The following conditions are required. 

(C1) There exists a positive number 𝐿𝑓 such that ||𝑓(𝑥1) − 𝑓(𝑥2)|| ≤ 

≤ 𝐿𝑓||𝑥1 − 𝑥2|| for all 𝑥1, 𝑥2 ∈ ℝ𝑝.  

 

 (C2) 
2

𝛼
𝐾(||𝐵||||𝐵−1||𝐿𝑓 + 1) < 1; 

 

Theorem 0.1. Suppose that conditions (𝐶1), (𝐶2) are valid, then system (0.2) 

possesses a unique unpredictable solution. Moreover, the unpredictable solution is 

uniformly exponentially stable if all eigenvalues of the matrix A have negative real 

parts. 

In the fourth section we extend Definition 0.1 to the class of functions with 

several independent variables. The following new definitions will be of use. 
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Definition 0.3. A continuous and bounded function 𝑓(𝑡, 𝑥): ℝ × 𝐺 → ℝ𝑝, 𝑓 = 

= (𝑓1, 𝑓2, . . . , 𝑓𝑝), 𝐺 ⊂ ℝ𝑝 is a bounded domain, is unpredictable in 𝑡 if it is uniformly 

continuous in 𝑡 and there exist positive numbers 𝜀0, 𝛿 and sequences {𝑡𝑛}, {𝑢𝑛}, both 

of which diverge to infinity such that sup
𝐺

||𝑓(𝑡 + 𝑡𝑛, 𝑥) − 𝑓(𝑡, 𝑥)|| → 0 as 𝑛 → ∞ 

uniformly on compact sets in ℝ and ||𝑓(𝑡 + 𝑡𝑛, 𝑥) − 𝑓(𝑡, 𝑥)|| ≥ 𝜀0 for 

𝑡 ∈ [𝑢𝑛 − 𝛿, 𝑢𝑛 + 𝛿], 𝑥 ∈ 𝐺 and 𝑛 ∈ ℕ . 
Definition 0.4. A continuous and bounded function 𝑓(𝑡, 𝑥): ℝ × 𝐺 → ℝ𝑝, 𝑓 = 

= (𝑓1, 𝑓2, … , 𝑓𝑝), 𝐺 ⊂ ℝ𝑝 is a bounded domain, is strongly unpredictable in 𝑡 if it is 

uniformly continuous in 𝑡 and there exist positive numbers 𝜀0, 𝛿 and sequences {𝑡𝑛}, 
{𝑢𝑛} both of which diverge to infinity such that sup

𝐺
||𝑓(𝑡 + 𝑡𝑛, 𝑥) − 𝑓(𝑡, 𝑥)|| → 0 

as 𝑛 → ∞ uniformly on compact sets in ℝ and |𝑓𝑖(𝑡 + 𝑡𝑛, 𝑥) − 𝑓𝑖(𝑡, 𝑥)| ≥ 𝜀0 for all  

𝑖 = 1,2. . . , 𝑝, (𝑡, 𝑥) ∈ [𝑢𝑛 − 𝛿, 𝑢𝑛 + 𝛿] × 𝐺, and 𝑛 ∈ ℕ. 
The following system of differential equations is considered: 

 

𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝑓(𝑡, 𝑥),                                 (0.4) 

 

where  𝑡 ∈ ℝ, 𝑥 ∈ ℝ𝑝, p is a fixed natural number, all eigenvalues of the constant 

matrix 𝐴 ∈ ℝ𝑝×𝑝 have negative real parts, 𝑓: ℝ × 𝐺 → ℝ𝑝, 𝑓 = (𝑓1, 𝑓2, … , 𝑓𝑝),  𝐺 = 

= {𝑥 ∈ ℝ𝑝, ||𝑥|| < 𝐻}, where 𝐻 is a positive number. It is true that there exist two 

real numbers 𝐾 ≥ 1 and 𝛾 < 0 such that ||𝑒𝐴𝑡|| ≤ 𝐾𝑒𝛾𝑡 for all 𝑡 ≥ 0. 
One can see that the main difference between system (0.2) and system (0.4) is 

that the perturbation in the former one is less general than that of the latter one. 

The following conditions will be needed: 

(𝐶1) the function 𝑓(𝑡, 𝑥) is strongly unpredictable in the sense of Definition 

0.4. 

The Definition 0.4 implies that there exists a positive number 𝑀 such that 

sup
ℝ×𝐺

||𝑓(𝑡, 𝑥)|| = 𝑀 < ∞; 

(𝐶2)  there exists a positive constant 𝐿 such that the function 𝑓(𝑡, 𝑥) satisfies 

the inequality ||𝑓(𝑡, 𝑥1) − 𝑓(𝑡, 𝑥2)|| ≤ 𝐿||𝑥1 − 𝑥2|| for all 𝑡 ∈ ℝ, 𝑥1, 𝑥2 ∈ 𝐺; 

 

 (𝐶3) 𝛾 < −
𝐾𝑀

𝐻
; 

 

             (𝐶4) 𝛾 < −𝐾𝐿. 
 

Theorem 0.4. If conditions (𝐶1) − (𝐶4) are fulfilled, then the system (0.4) 

admits a unique uniformly exponentially stable strongly unpredictable solution. 

Moreover, it is proved that if the function 𝑓(𝑡, 𝑥) is unpredictable in the sense 

of Definition 0.3, then the system (0.4) admits a unique uniformly exponentially 

stable unpredictable solution. 

The theoretical results confirmed by examples and graphical illustrations. 
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In the second chapter we discuss about unpredictable oscillations in neural 

networks.  

In the first section SICNNs are considered, which have been introduced by                 

A. Bouzerdoum and R. Pinter. In its original formulation [85], the SICNNs model is a 

two-dimensional grid of processing cells. Let 𝐶𝑖𝑗 denote the cell at the (i, j) position 

of the lattice. Denote by 𝑁𝑟(𝑖𝑗) the r – neighborhood 𝐶𝑖𝑗, such that: 

 

𝑁𝑟(𝑖𝑗) = {𝐶𝑘𝑝: max(|𝑘 − 𝑖|, |𝑝 − 𝑗|) ≤ 𝑟, 1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑝 ≤ 𝑛}, 

 

where 𝑚 and 𝑛 are fixed natural numbers. In SICNNs, neighboring cells exert mutual 

inhibitory interactions of the shunting type. The dynamics of the cell 𝐶𝑖𝑗 is described 

by the following nonlinear ordinary differential equation: 

                  
𝑑𝑥𝑖𝑗

𝑑𝑡
= −𝑎𝑖𝑗𝑥𝑖𝑗 − ∑ 𝐶𝑖𝑗

𝑘𝑝
𝑓(𝑥𝑘𝑝(𝑡))𝑥𝑖𝑗(𝑡) + 𝑣𝑖𝑗(𝑡),

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

                         (0.5) 

                

where 𝑥𝑖𝑗 is activity of the cell 𝐶𝑖𝑗 , the constant 𝑎𝑖𝑗 represents the passive decay rate 

of the cell activity; 

𝐶𝑖𝑗
𝑘𝑝

≥ 0 is the connection or coupling strength of postsynaptic activity of the 

cell 𝐶𝑘𝑝 transmitted to the cell 𝐶𝑖𝑗 and the activation 𝑓(𝑥𝑘𝑝) is a positive continuous 

function representing the output or firing rate of the cell 𝐶𝑘𝑝, 𝑣𝑖𝑗(𝑡) is the external 

input to the cell 𝐶𝑖𝑗. 

Let us denote by 𝒜 the set of functions 𝑢(𝑡) = (𝑢11, … , 𝑢1𝑛, … , 𝑢𝑚1 … , 𝑢𝑚𝑛), 
𝑡, 𝑢𝑖𝑗 ∈ ℝ, 𝑖 = 1,2, . . . , 𝑚, 𝑗 = 1,2, . . . , 𝑛, where 𝑚, 𝑛 ∈ ℕ, such that: 

(𝒜1) functions 𝑢(𝑡) are uniformly continuous and there exists a positive number H 

such that ||𝑢||1 < 𝐻 for all 𝑢(𝑡) ∈ 𝒜; 
(𝒜2) there exists a sequence 𝑡𝑝, 𝑡𝑝 → ∞ as 𝑝 → ∞ such that for each 𝑢(𝑡) ∈ 𝒜 

the sequence 𝑢(𝑡 + 𝑡𝑝) uniformly converges to 𝑢(𝑡) on each closed and bounded 

interval of the real axis. 

The following assumptions will be needed 
(𝐶1) the function 𝑣(𝑡) = (𝑣11, … , 𝑣1𝑛, … , 𝑣𝑚1 … , 𝑣𝑚𝑛), 𝑡, 𝑣𝑖𝑗 ∈ ℝ, 𝑖 = 1, … , 𝑚, 

𝑗 = 1, . . . , 𝑛, in system (0.5) belongs to 𝒜 and is unpredictable such that there exist 

positive numbers 𝛿, 𝜀0 > 0 and a sequence 𝑡𝑝 → ∞ as 𝑝 → ∞, which satisfy 

||𝑣(𝑡 + 𝑡𝑝) − 𝑣(𝑡)|| ≥ 𝜀0 for all 𝑡 ∈ [𝑠𝑝 − 𝛿, 𝑠𝑝 + 𝛿], and 𝑝 ∈ ℕ. 

(𝐶2) for the rates we assume that 𝛾 = 𝑚𝑖𝑛
(𝑖,𝐽)

𝑎𝑖𝑗 > 0 and �̅� = 𝑚𝑎𝑥
(𝑖,𝑗)

𝑎𝑖𝑗; 

(𝐶3) there exist positive numbers 𝑚𝑖𝑗 and 𝑚𝑓 such that 𝑠𝑢𝑝
𝑡∈ℝ

|𝑣𝑖𝑗| ≤ 𝑚𝑖𝑗 for all  

𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛, and 𝑠𝑢𝑝
|𝑠|<𝐻

|𝑓(𝑠)| ≤ 𝑚𝑓; 

(𝐶4) there exists Lipschitz constant L such that |𝑓(𝑠1) − 𝑓(𝑠2)| ≤ 𝐿|𝑠1 − 𝑠2| 
for all 𝑠1, 𝑠2, |𝑠1| < 𝐻, | 𝑠2| < 𝐻; 
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(𝐶5)(𝐿𝐻 + 𝑚𝑓) 𝑚𝑎𝑥
(𝑖,𝑗)

∑ 𝐶𝑖𝑗
𝑘𝑝

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗) < 𝛾 for all 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛. 

 

The main result of the present section is mentioned in the next theorem. 

Theorem 0.5. Suppose that conditions (𝐶1) − (𝐶5) are valid, then the system 

(0.5) possesses a unique asymptotically stable unpredictable solution. 

In the second section we consider following SICNNs 

 

                  
𝑑𝑥𝑖𝑗

𝑑𝑡
= −𝑏𝑖𝑗𝑥𝑖𝑗 − ∑ 𝐷𝑖𝑗

𝑘𝑝
𝑓(𝑥𝑘𝑝(𝑡))𝑥𝑖𝑗(𝑡) + 𝑔𝑖𝑗(𝑡),

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

              (0.6) 

 

with strongly unpredictable perturbations.  

We denote by ℬ the set of functions 𝑢(𝑡) = (𝑢11, … , 𝑢1𝑛, … , 𝑢𝑚1 … , 𝑢𝑚𝑛), 
 𝑡, 𝑢𝑖𝑗 ∈ ℝ, 𝑖 = 1,2, . . . , 𝑚, 𝑗 = 1,2, . . . , 𝑛, where 𝑚, 𝑛 ∈ ℕ, such that: 

(ℬ1) functions 𝑢(𝑡) are uniformly continuous; 

(ℬ2) there exists a positive number H such that ||𝑢||1 < 𝐻 for all 𝑢(𝑡) ∈ ℬ; 
(ℬ3) there exists a sequence 𝑡𝑝, 𝑡𝑝 → ∞ as 𝑝 → ∞ such that for each 𝑢(𝑡) ∈ ℬ 

the sequence 𝑢(𝑡 + 𝑡𝑝) uniformly converges to 𝑢(𝑡) on each closed and bounded 

interval of the real. 

The following conditions are needed  

(𝐷1) the function 𝑔(𝑡) = (𝑔11, … , 𝑔1𝑛, … , 𝑔𝑚1 … , 𝑔𝑚𝑛), 𝑡, 𝑔𝑖𝑗 ∈ ℝ, 𝑖 =

1,2, … , 𝑚, 
𝑗 = 1,2, . . . , 𝑛, in system (0.6) belongs to ℬ and is strongly unpredictable such 

that there exist positive numbers 𝛿, 𝜀0 > 0 and a sequence 𝑡𝑝 → ∞ as 𝑝 → ∞, which 

satisfy |𝑔𝑖𝑗(𝑡 + 𝑡𝑝)−𝑔𝑖𝑗(𝑡)| ≥ 𝜀0 for all 𝑡 ∈ [𝑠𝑝 − 𝛿, 𝑠𝑝 + 𝛿], 𝑖 = 1, . . . , 𝑚, 𝑗 =

1, . . . , 𝑛, and 𝑝 ∈ ℕ. 

(𝐷2) 𝛾 ≤ 𝑏𝑖𝑗 ≤ �̅�, where 𝛾, �̅� are positive numbers; 

(𝐷3) |𝑔𝑖𝑗(𝑡)| ≤ 𝑚𝑖𝑗, where 𝑚𝑖𝑗 are positive numbers, for all 𝑖 = 1, … , 𝑚, 𝑗 =

1, … , 𝑛, and 𝑡 ∈ ℝ; 

(𝐷4)  |𝑓(𝑠)| ≤ 𝑚𝑓, for |𝑠|  < 𝐻 and some constant 𝑚𝑓 > 0; 

(𝐷5) there exists Lipschitz constant L such that |𝑓(𝑠1) − 𝑓(𝑠2)| ≤ 𝐿|𝑠1 − 𝑠2| 
for all 𝑠1, 𝑠2, |𝑠1| < 𝐻, |𝑠2| < 𝐻; 

 

 (𝐷6) 𝑚𝑓 ∑ 𝐷𝑖𝑗
𝑘𝑝

< 𝑏𝑖𝑗𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗) , for each 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛; 

 

           (𝐷7)
𝑚𝑖𝑗

𝑏𝑖𝑗 − 𝑚𝑓 ∑ 𝐷𝑖𝑗
𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

< 𝐻 , for all 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛; 

 

           (𝐷8) (𝐿𝐻 + 𝑚𝑓) 𝑚𝑎𝑥
(𝑖,𝑗)

∑ 𝐷𝑖𝑗
𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗) < 𝛾. 

 

Theorem 0.6. Suppose that conditions (𝐷1) − (𝐷8) are valid, then the system 

(0.6) possesses a unique asymptotically stable strongly unpredictable solution. 
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In the third section the following INN is considered:   

 

𝑑2𝑥𝑖(𝑡)

𝑑𝑡2
= −𝑎𝑖

𝑑𝑥𝑖(𝑡)

𝑑𝑡
− 𝑏𝑖𝑥𝑖(𝑡) + ∑ 𝑐𝑖𝑗𝑓𝑗(𝑥𝑗(𝑡)) + 𝑣𝑖(𝑡),

𝑝

𝑗=1

                   (0.7) 

 

where 𝑡, 𝑥𝑖 ∈ ℝ, 𝑖 = 1,2, … , 𝑝, 𝑝 denotes the number of neurons in the network; 

𝑥𝑖(𝑡) with 𝑖 = 1,2, … , 𝑝, corresponds to the state of the unit i at time 𝑡; the 

second derivative is called an inertial term; 

𝑏𝑖 > 0, 𝑎𝑖 > 0 are constants; 

𝑓𝑖 with 𝑖 = 1, . . . , 𝑝, denote the measures of activation to its incoming 

potentials of ith neuron; 𝑐𝑖𝑗 for all 𝑖, 𝑗 = 1,2, . . . , 𝑝, are constants, which denote the 

synaptic connection weight of the unit j on the unit i; 

𝑣𝑖(𝑡) are external inputs on the ith neuron at time 𝑡.  

We assume that the coefficients 𝑐𝑖𝑗 are real, the activation functions 𝑓𝑖: ℝ → ℝ 

are continuous functions satisfy the following condition: 

(I1) |𝑓𝑖(𝑥1) − 𝑓𝑖(𝑥2)| ≤ 𝐿𝑖|𝑥1 − 𝑥2| for all 𝑥1, 𝑥2 ∈ ℝ, where 𝐿𝑖 > 0 are 

Lipschitz constant, for all 𝑖 = 1,2, . . . , 𝑝, and max
1≤𝑖≤𝑝

𝐿𝑖 = 𝐿. 

By introducing the following variable transformation  

 

𝑦𝑖(𝑡) = 𝜉𝑖

𝑑𝑥𝑖(𝑡)

𝑑𝑡
+ 𝜁𝑖𝑥𝑖(𝑡), 𝑖 = 1, … , 𝑝,                             (0.8) 

                                             

the neural network (0.7) can be written as 

 
𝑑𝑥𝑖(𝑡)

𝑑𝑡
= −

𝜁𝑖

𝜉𝑖
𝑥𝑖(𝑡) +

1

𝜉𝑖
𝑦𝑖(𝑡),                                (0.9) 

 

𝑑𝑦𝑖(𝑡)

𝑑𝑡
= − (𝑎𝑖 −

𝜁𝑖

𝜉𝑖
) 𝑦𝑖(𝑡) − (𝜉𝑖𝑏𝑖 − 𝜁𝑖 (𝑎𝑖 −

𝜁𝑖

𝜉𝑖
)) 𝑥𝑖(𝑡) + 

 

+𝜉𝑖 ∑ 𝑐𝑖𝑗𝑓𝑗(𝑥𝑗(𝑡))

𝑝

𝑗=1

+ 𝜉𝑖𝑣𝑖(𝑡),                                                 (0.10) 

 

The following conditions will be needed: 

(I2) the functions 𝑣𝑖(𝑡), 𝑖 = 1, . . . , 𝑝, in system (0.7) are unpredictable; 

(I3) there exists a positive number H and 𝑀𝑓 such that |𝑓𝑖(𝑠)| ≤ 𝑀𝑓 , 𝑖 =

1, … , 𝑝,  |𝑠| < 𝐻. 

           Moreover, we assume that for positive real numbers 𝜁𝑖   and 𝜉𝑖 , 𝑖 = 1, . . . , 𝑝 the 

following inequalities are valid: 
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(I4) 𝑎𝑖 >
𝜁𝑖

𝜉𝑖
+ 𝜉𝑖 , 𝜁𝑖 > 𝜉𝑖 > 1; 

 

(I5) (𝑎𝑖 −
𝜁𝑖

𝜉𝑖
) − (|𝜁𝑖 (𝑎𝑖 −

𝜁𝑖

𝜉𝑖
) − 𝜉𝑖𝑏𝑖| + 𝜉𝑖) > 0; 

 

(I6) 
𝜉𝑖𝑀𝑓 ∑ 𝑐𝑖𝑗

𝑝
𝑗=1

(𝑎𝑖 −
𝜁𝑖

𝜉𝑖
) − (|𝜁𝑖 (𝑎𝑖 −

𝜁𝑖

𝜉𝑖
) − 𝜉𝑖𝑏𝑖| + 𝜉𝑖)

< 𝐻; 

 

(I7) 
1

(𝑎𝑖 −
𝜁𝑖

𝜉𝑖
)

(|𝜁𝑖 (𝑎𝑖 −
𝜁𝑖

𝜉𝑖
) − 𝜉𝑖𝑏𝑖| + 𝐿𝜉𝑖 ∑ 𝑐𝑖𝑗

𝑝

𝑗=1

) < 1; 

 

(I8) max
𝑖

(
1

𝜉𝑖
, |𝜁𝑖 (𝑎𝑖 −

𝜁𝑖

𝜉𝑖
) − 𝜉𝑖𝑏𝑖| + 𝐿𝜉𝑖 ∑ 𝑐𝑖𝑗

𝑝

𝑗=1

) < min
𝑖

(
𝜁𝑖

𝜉𝑖
, 𝑎𝑖 −

𝜁𝑖

𝜉𝑖
). 

 

The main theorem is proved. 

Theorem 0.7. Assume that conditions (𝐼1) − (𝐼8) are fulfilled. Then the 

system (0.7) admits a unique asymptotically stable strongly unpredictable solution. 

Illustrative examples concerning unpredictable oscillations of neural networks 

are provided. 
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1 UNPREDICTABLE SOLUTIONS OF ORDINARY DIFFERENTIAL 

EQUATIONS 

 

1.1 Unpredictable functions 

Throughout the thesis, ℝ, ℕ and ℤ will stand for the set of real, natural and 

integer numbers, respectively. Additionally, and the norm ||𝜐||1 = 𝑠𝑢𝑝
𝑡∈ℝ

||𝜐(𝑡)||, 

where ||𝜐|| = 𝑚𝑎𝑥
1≤𝑗≤𝑝

|𝜐𝑖|, 𝜐 = (𝜐1, . . . , 𝜐𝑝), 𝑡, 𝜐𝑖 ∈ ℝ  𝑖 = 1,2, . . . , 𝑝,  𝑝 ∈ ℕ, will be 

used.  

The following definition is one of the main in our study. 

Definition 1.1.1. [4, р. 658] A uniformly continuous and bounded function 

𝜗: ℝ → ℝ𝑚 is unpredictable if there exist positive numbers 𝜀0, 𝛿 and sequences 
{𝑡𝑛}, {𝑢𝑛} both of which diverge to infinity such that ‖𝜗(𝑡 + 𝑡𝑛) − 𝜗(𝑡)‖ → 0 as  
𝑛 → ∞ uniformly on compact subsets of ℝ and ‖𝜗(𝑡 + 𝑡𝑛) − 𝜗(𝑡)‖ ≥ 𝜀0 for each 

𝑡 ∈ [𝑢𝑛 − 𝛿, 𝑢𝑛 + 𝛿] and 𝑛 ∈ ℕ. 

The convergence of the sequence 𝜗(𝑡 + 𝑡𝑛) is said to be Poisson stability of 

the unpredictable function or simply Poisson stability as well as existence of the 

numbers 𝜀0, 𝛿 and the sequence 𝑢𝑛 is allow the unpredictable property of the 

unpredictable function.  

The Definition 1.1.1 implies that some coordinates may not be unpredictable 

scalar valued functions. That is why, it is of great importance for applications to 

consider motions which are unpredictable in all state dimensions, that is strongly 

unpredictable functions. 

Definition 1.1.2. A uniformly continuous and bounded function 𝑣: ℝ → ℝ𝑝, 
𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑝), is strongly unpredictable if there exist positive numbers 𝜀0, 𝛿 and 

sequences {𝑡𝑛}, {𝑢𝑛}, both of which diverge to infinity such that 𝑣(𝑡 + 𝑡𝑛) → 𝑣(𝑡) as 

𝑛 → ∞ uniformly on compact sets of ℝ and |𝑣𝑖(𝑡 + 𝑡𝑛) − 𝑣𝑖(𝑡)| ≥ 𝜀0 for all 

 𝑖 = 1,2. . . , 𝑝, 𝑡 ∈ [𝑢𝑛 − 𝛿, 𝑢𝑛 + 𝛿] and 𝑛 ∈ ℕ . 
It can easily show that any strongly unpredictable function is an unpredictable 

one as in Definition 1.1.1, but not vice versa. Moreover, each of the functions 𝑣𝑖(𝑡), 
 𝑖 = 1,2. . . , 𝑝, in the Definition 1.1.2 are unpredictable in the sense of the Definition 

1.1.1. 

The properties of unpredictable function 

1. The multiplication of a constant with an unpredictable function is an 

unpredictable function. 

2. If the function 𝜙(𝑡): ℝ → ℝ is unpredictable, then the function 𝜙(𝑡) + 𝐶, 

where  𝐶 is a constant, is also unpredictable. 

Proof. There exist positive numbers 𝜀0, 𝛿 and sequences {𝑡𝑛}, {𝑢𝑛} both of 

which diverge to infinity such that ‖𝜙(𝑡 + 𝑡𝑛) − 𝜙(𝑡)‖ → 0 as 𝑛 → ∞ uniformly on 

compact subsets of ℝ and ‖𝜙(𝑡 + 𝑡𝑛) − 𝜙(𝑡)‖ ≥ 𝜀0 for each 𝑡 ∈ [𝑢𝑛 − 𝛿, 𝑢𝑛 + 𝛿] 
and 𝑛 ∈ ℕ. Let us denote 𝜔(𝑡) = 𝜙(𝑡) + 𝐶. Then we have that ‖𝜔(𝑡 + 𝑡𝑛) −
−𝜔(𝑡)‖ = ‖𝜙(𝑡 + 𝑡𝑛) − 𝜙(𝑡)‖ → 0 as 𝑛 → ∞ uniformly on compact subsets of ℝ 

and ‖𝜔(𝑡 + 𝑡𝑛) − 𝜔(𝑡)‖ = ‖𝜙(𝑡 + 𝑡𝑛) − 𝜙(𝑡)‖ ≥ 𝜀0 for each 𝑡 ∈ [𝑢𝑛 − 𝛿, 𝑢𝑛 + 𝛿] 
and 𝑛 ∈ ℕ. Therefore, the function 𝜙(𝑡) + 𝐶 is unpredictable. 
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3. Suppose that 𝜙(𝑡): ℝ → ℝ  is an unpredictable function. Then the function 

𝜙3(𝑡) is unpredictable. 

Proof. One can find numbers 𝜀0 > 0, 𝛿 > 0 and sequences {𝑡𝑛}, {𝑢𝑛} both of 

which diverge to infinity such that ‖𝜙(𝑡 + 𝑡𝑛) − 𝜙(𝑡)‖ → 0 as 𝑛 → ∞ uniformly on 

compact subsets of ℝ and ‖𝜙(𝑡 + 𝑡𝑛) − 𝜙(𝑡)‖ ≥ 𝜀0 for each 𝑡 ∈ [𝑢𝑛 − 𝛿, 𝑢𝑛 + 𝛿] 
and 𝑛 ∈ ℕ. It is easy to check that ‖𝜙3(𝑡 + 𝑡𝑛) − 𝜙3(𝑡)‖ → 0 as 𝑛 → ∞ uniformly 

on compact subsets of ℝ, since it follows from the uniform continuity of the cubic 

function on a compact set. 

Fix a natural number n. Let us show that for 𝑡 ∈ [𝑢𝑛 − 𝛿, 𝑢𝑛 + 𝛿] the 

inequality ‖𝜙(𝑡 + 𝑡𝑛) − 𝜙(𝑡)‖ ≥ 𝜀0 implies ‖𝜙3(𝑡 + 𝑡𝑛) − 𝜙3(𝑡)‖ ≥ 𝜀0
3/4. 

We have that: 

 

|𝜙3(𝑡 + 𝑡𝑛) − 𝜙3(𝑡)| =
1

2
|𝜙(𝑡 + 𝑡𝑛) − 𝜙(𝑡)|[𝜙2(𝑡 + 𝑡𝑛) + 𝜙2(𝑡) + 

 

+(𝜙(𝑡 + 𝑡𝑛) + 𝜙(𝑡))2] ≥
1

2
(𝜙2(𝑡 + 𝑡𝑛) + 𝜙2(𝑡))𝜀0. 

 

Consider the function 𝐹(𝑎, 𝑏) = 𝑎2 + 𝑏2 for |𝑎 − 𝑏| ≥ 𝜀0. The minimum of  𝐹 

occurs at the points (𝑎, 𝑏) with |𝑎| = |𝑏| = 𝜀0/2. Therefore, |𝜙3(𝑡 + 𝑡𝑛) − 𝜙3(𝑡)| ≥
≥ 𝜀0

3/4 for  𝑡 ∈ [𝑢𝑛 − 𝛿, 𝑢𝑛 + 𝛿]. 
Next, we extend Definition 1.1.1 to the class of functions with several 

independent variables. The following new definition will be of use. 

Definition 1.1.3. A continuous and bounded function 𝑓(𝑡, 𝑥): ℝ × 𝐺 → ℝ𝑝,  
𝑓 = (𝑓1, 𝑓2, . . . , 𝑓𝑝), 𝐺 ⊂ ℝ𝑝 is a bounded domain, is unpredictable in 𝑡 if it is 

uniformly continuous in 𝑡 and there exist positive numbers 𝜀0, 𝛿 and sequences 

{𝑡𝑛}, {𝑢𝑛}, both of which diverge to infinity such that sup
𝐺

||𝑓(𝑡 + 𝑡𝑛, 𝑥) − 𝑓(𝑡, 𝑥)|| →

→ 0 as 𝑛 → ∞ uniformly on compact sets in ℝ and ||𝑓(𝑡 + 𝑡𝑛, 𝑥) − 𝑓(𝑡, 𝑥)|| ≥ 𝜀0 for  

𝑡 ∈ [𝑢𝑛 − 𝛿, 𝑢𝑛 + 𝛿], 𝑥 ∈ 𝐺 and 𝑛 ∈ ℕ . 
We consider nonlinear perturbations, which are functions unpredictable in the 

time variable. Thus, in the present section we have significantly enlarged the set of 

systems, which can be investigated for unpredictable solutions. To this end, we shall 

need the following new notion. 

Definition 1.1.4. A continuous and bounded function 𝑓(𝑡, 𝑥): ℝ × 𝐺 → ℝ𝑝,  

𝑓 = (𝑓1, 𝑓2, … , 𝑓𝑝), 𝐺 ⊂ ℝ𝑝 is a bounded domain, is strongly unpredictable in 𝑡 if it is 

uniformly continuous in 𝑡 and there exist positive numbers 𝜀0, 𝛿 and sequences {𝑡𝑛},  
{𝑢𝑛}, both of which diverge to infinity such that sup

𝐺
||𝑓(𝑡 + 𝑡𝑛, 𝑥) − 𝑓(𝑡, 𝑥)|| → 0 

as 𝑛 → ∞  uniformly on compact sets in ℝ and |𝑓𝑖(𝑡 + 𝑡𝑛, 𝑥) − 𝑓𝑖(𝑡, 𝑥)| ≥ 𝜀0 for all 

𝑖 = 1,2. . . , 𝑝, (𝑡, 𝑥) ∈ [𝑢𝑛 − 𝛿, 𝑢𝑛 + 𝛿] × 𝐺, and 𝑛 ∈ ℕ. 
An example of unpredictable function  

Let us take into account the logistic map 

 

𝜆𝑖+1 = 𝐹𝜇(𝜆𝑖),                                                         (1.1.1) 
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where 𝑖 ∈ ℤ and 𝐹𝜇(𝑠) = 𝜇𝑠(1 − 𝑠). The interval [0,1) is invariant under the 

iterations of (1.1.1) for 𝜇 ∈ (0,4] [86]. It was shown in [3, р. 88] that the logistic map 

(1.1.1) possesses an unpredictable solution for each 𝜇 ∈ [3 + (2/3)1/2, 4]. 
Let 𝜓𝑖 , 𝑖 ∈ ℤ, be an unpredictable solution of the logistic map (1.1.1) with 𝜇 =

= 3.92 inside the unit interval (0,1]. There exist a positive number 𝜌 and sequences 

𝜁𝑝, 𝜂𝑝, both of which diverge to infinity such that |𝜓𝑖+𝜂𝑝
− 𝜓𝜂𝑝

| → 0 as 𝑝 → ∞ for 

each i in bounded intervals of integers and |𝜓𝜁𝑝+𝜂𝑝
− 𝜓𝜂𝑝

| ≥ 𝜌 for each 𝑝 ∈ ℕ. 

Define the following integral: 

                                                          

Θ(𝑡) = ∫ 𝑒−3(𝑡−𝑠)Ω(𝑠)𝑑𝑠,
𝑡

−∞

                                                (1.1.2) 

           

where Ω(𝑡) is a piecewise constant function defined on the real axis through the 

equation Ω(𝑡) = 𝜓𝑖 for 𝑡 ∈ [𝑖, 𝑖 + 1], 𝑖 ∈ ℤ. In figure 1 the graph of function 

Ω(𝑡) is shown. 
 

 
 

Figure 1 – The graph of piecewise constant function Ω(𝑡) 

 

It is worth noting that Θ(𝑡) is bounded on the whole real axis such that 

sup
𝑡∈ℝ

|Θ(𝑡)| ≤ 1/3.  

Next, we will show that function Θ(𝑡) is an unpredictable function. Consider a 

fixed bounded and closed interval [𝛼, 𝛽], of the axis and a positive number 𝜀. 

Without loss of generality, one can assume that 𝛼 and 𝛽 are integers. Now, we fix a 

positive number 𝜉 and and integer 𝛾 < 𝛼, which satisfy the following inequalities  
2

3
𝑒−3(𝛼−𝛾) <

𝜀

2
 and  

𝜉

3
[1 − 𝑒−3(𝛽−𝛾)] <

𝜀

2
 . Let p be a large enough number such that 

|Ω(𝑡 + 𝜁𝑝) − Ω(𝑡)| < 𝜉 on [𝛾, 𝛽]. Then for all 𝑡 ∈ [𝛼, 𝛽] we obtain that: 

 

|Θ(𝑡 + 𝜁𝑝) − Θ(𝑡)| = | ∫ 𝑒−3(𝑡−𝑠)(Ω(𝑠 + 𝜁𝑝) − Ω(𝑠))𝑑𝑠|
𝑡

−∞

= 
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= | ∫ 𝑒−3(𝑡−𝑠) (Ω(𝑠 + 𝜁𝑝) − Ω(𝑠)) 𝑑𝑠
𝛾

−∞

+ ∫ 𝑒−3(𝑡−𝑠)(Ω(𝑠 + 𝜁𝑝) − Ω(𝑠))𝑑𝑠|
𝑡

𝛾

≤ 

 

≤ ∫ 𝑒−3(𝑡−𝑠)2𝑑𝑠 + ∫ 𝑒−3(𝑡−𝑠)𝜉𝑑𝑠 ≤
2

3

𝑡

𝛾

𝛾

−∞

𝑒−3(𝛼−𝛾) +
𝜉

3
[1 − 𝑒−3(𝛽−𝛾)] <

𝜀

2
+

𝜀

2
= 𝜀. 

 

Thus |Θ(𝑡 + 𝜁𝑝) − Θ(𝑡)| → 0 as 𝑝 → ∞ uniformly on the interval [𝛾, 𝛽]. 

It is true that |Ω(𝑡 + 𝜁𝑝) − Ω(𝑡)| = |𝜓𝜁𝑝+𝜂𝑝
− 𝜓𝜂𝑝

| ≥ 𝜌, 𝑡 ∈ [𝜂𝑝, 𝜂𝑝 + 1] for 

all p∈ ℤ, and there exists a positive number 𝜅 < 1 such that 
2

3
[1 − 𝑒3𝜅] ≤

𝜌

6
.  

Let us fix the number 𝜅 and 𝑝 ∈ ℕ, and consider two alternative cases: 

 (𝑖) |Θ(𝜂𝑝 + 𝜁𝑝) − Θ(𝜂𝑝)| <
𝜌

4
 and (ii) |Θ(𝜂𝑝 + 𝜁𝑝) − Θ(𝜂𝑝)| ≥

𝜌

4
.  

It is easily seen that the following relation holds: 

 

Θ(𝑡 + 𝜁𝑝) − Θ(𝑡) =

= Θ(𝜂𝑝 + 𝜁𝑝) − Θ(𝜂𝑝) + ∫ 𝑒−3(𝑡−𝑠)
𝑡

𝜂𝑝

(Ω(𝑠 + 𝜁𝑝) − Ω(𝑠))𝑑𝑠.       (1.1.3) 

 

(i) From the last relation we obtain that 

 

|Θ(𝑡 + 𝜁𝑝) − Θ(t)| ≥

≥ | ∫ 𝑒−3(𝑡−𝑠)
𝑡

𝜂𝑝

(Ω(𝑠 + 𝜁𝑝) − Ω(𝑠)) 𝑑𝑠| − |Θ(𝜂𝑝 + 𝜁𝑝) − Θ(𝜂𝑝)| ≥ 

 

≥ ∫ 𝑒−3(𝑡−𝑠)
𝑡

𝜂𝑝

𝜌𝑑𝑠 −
𝜌

4
≥

𝜌

3
−

𝜌

4
=

𝜌

12
                                                   (1.1.4) 

 

for 𝑡 ∈ [𝜂𝑝, 𝜂𝑝 + 1).  

(ii) Using the relation (1.1.3) we get that 

 

|Θ(𝑡 + 𝜁𝑝) − Θ(t)| ≥ 

 

≥ |Θ(𝜂𝑝 + 𝜁𝑝) − Θ(𝜂𝑝)| − | ∫ 𝑒−3(𝑡−𝑠)
𝑡

𝜂𝑝

(Ω(𝑠 + 𝜁𝑝) − Ω(𝑠))𝑑𝑠| ≥ 

 

                     ≥
𝜌

4
− ∫ 2𝑒−3(𝑡−𝑠)

𝑡

𝜂𝑝

𝑑𝑠 ≥
𝜌

4
−

2

3
(1 − 𝑒−3𝜅) ≥

𝜌

12
                              (1.1.5) 

 

for 𝑡 ∈ [𝜂𝑝, 𝜂𝑝 + 𝜅). 
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Thus, (1.1.4) and (1.1.5) prove finally that the function Θ(𝑡) is unpredictable 

with positive 𝜀0 =
𝜌

12
, 𝛿 =

𝜅

3
 and sequences 𝑡𝑝 = 𝜁𝑝, 𝑠𝑝 = 𝜂𝑝 +

𝜅

2
. 

Since we do not reliably know the initial value of the function Θ(𝑡), we are not 

able to visualize it. For this reason, let’s represent the function Θ(𝑡), as follows: 

 

Θ(𝑡) = ∫ 𝑒−3(𝑡−𝑠)Ω(𝑠)𝑑𝑠
𝑡

−∞

= 𝑒−3𝑡Θ0 + ∫ 𝑒−3(𝑡−𝑠)Ω(𝑠)𝑑𝑠
𝑡

0

,            (1.1.6) 

             

where 

Θ0 = ∫ 𝑒3𝑠Ω(𝑠)𝑑𝑠
0

−∞

. 

 

Next, we will simulate the function 

Φ(𝑡) = 𝑒−3𝑡Φ0 + ∫ 𝑒−3(𝑡−𝑠)Ω(𝑠)𝑑𝑠
𝑡

0

, 𝑡 ≥ 0,                         (1.1.7) 

                             

where Φ0 is a fixed number, which not necessarily equal to Θ0. If we subtract the 

equality (1.1.7) from equality (1.1.6), we obtain Θ(𝑡) − Φ(𝑡) = 𝑒−3𝑡(Θ0 − Φ0), 
𝑡 ≥ 0. The last equation demonstrates that the difference Θ(𝑡) − Φ(𝑡) exponentially 

diminishes. Consequently, the graph of the function Φ(𝑡) approximates the graph of 

the function Θ(𝑡), as time increases. Figure 2 shows the graph of the function Φ(𝑡), 

defined by the initial value Φ(0) = 0.8 accurate to 10−4. Moreover, since 

sup
𝑡∈ℝ

|Θ(𝑡)| ≤ 1/3, then for 𝑡 ≥ 2𝑙𝑛10 −
1

3
𝑙𝑛

3

2
≈ 3.71 the function Φ(𝑡) will 

coincide with Θ(𝑡) to within 10−6. 

 

 
Figure 2 – The graph of function Φ(t), which approaches the unpredictable function 

Θ(t) 

 

1.2 Hyperbolic linear systems  

Let us consider the system of linear differential equations: 
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𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝑔(𝑡),                                                (1.2.1) 

 

where 𝑥 ∈ ℝ𝑝, and the function 𝑔: ℝ → ℝ𝑝 is uniformly continuous and bounded. 

Moreover, all eigenvalues of the constant matrix 𝐴 ∈ ℝ𝑝×𝑝 have nonzero real parts. 

We will make use of the usual Euclidian norm, and the norm induced by the 

Euclidean norm for square matrices. 

Assume that the following condition is valid. 

(C) 𝑅𝑒 𝜆𝑖 < 0, 𝑖 = 1,2, . . . , 𝑟, and 𝑅𝑒 𝜆𝑖 > 0, 𝑖 = 𝑟 + 1, 𝑟 + 2, . . . , 𝑝, 1 ≤ 𝑟 < 𝑝, 
where 𝜆𝑖, 𝑖 = 1,2, . . . , 𝑝, are the eigenvalues of the matrix 𝐴 and 𝑅𝑒 𝜆𝑖 denotes the 

real part of 𝜆𝑖. 

One can find a nonsingular matrix 𝐵 such that the substitution 𝑥 = 𝐵𝑦 

transforms system (1.2.1) to the equation: 

 

𝑦′(𝑡) = 𝐵−1𝐴𝐵𝑦(𝑡) + 𝐵−1𝑔(𝑡),                                        (1.2.2) 

 

with the block diagonal matrix of coefficients [87]. Therefore, we assume without 

loss of generality that the matrix 𝐴 in system (1.2.1) is block diagonal such that 𝐴 =
𝑑𝑖𝑎𝑔(𝐴−, 𝐴+), where the eigenvalues of the matrices 𝐴− and 𝐴+ possess negative and 

positive real parts, respectively. There exist numbers 𝐾 ≥ 1 and 𝛼 > 0 such that 

||𝑒𝐴−𝑡|| ≤ 𝐾𝑒−𝛼𝑡 for 𝑡 ≥ 0 and ||𝑒𝐴+𝑡|| ≥ 𝐾𝑒𝛼𝑡 for 𝑡 < 0. 

From equation (1.2.1), it implies that the following auxiliary assertion is 

needed. 

Lemma 1.2.1. If the function 𝑔(𝑡) is unpredictable, then the function 𝑓(𝑡) = 

= 𝐵−1𝑔(𝑡) is also unpredictable. 

Proof. There exist positive numbers 𝜀0, 𝛿 and sequences {𝑡𝑛}, {𝑢𝑛} both of 

which diverge to infinity such that ‖𝑔(𝑡 + 𝑡𝑛) − 𝑔(𝑡)‖ → 0 as 𝑛 → ∞ uniformly on 

compact subsets of ℝ and ‖𝑔(𝑡 + 𝑡𝑛) − 𝑔(𝑡)‖ ≥ 𝜀0 for each 𝑡 ∈ [𝑢𝑛 − 𝛿, 𝑢𝑛 + 𝛿] 

and 𝑛 ∈ ℕ.  Then we have that ‖𝑓(𝑡 + 𝑡𝑛) − 𝑓(𝑡)‖ = ||𝐵−1(𝑔(𝑡 + 𝑡𝑛) − 𝑔(𝑡))|| ≤ 

≤ ||𝐵−1|| ∙ ||𝑔(𝑡 + 𝑡𝑛) − 𝑔(𝑡)||, this is why and ‖𝑓(𝑡 + 𝑡𝑛) − 𝑓(𝑡)‖ → 0 as 𝑛 → ∞ 

uniformly on compact subsets of ℝ.  On the other hand, ‖𝑓(𝑡 + 𝑡𝑛) − 𝑓(𝑡)‖ = 

= |𝐵−1(𝑔(𝑡 + 𝑡𝑛) − 𝑔(𝑡))|| ≥ ||𝐵−1||𝜀0 for each 𝑡 ∈ [𝑢𝑛 − 𝛿, 𝑢𝑛 + 𝛿] and 𝑛 ∈ ℕ. 

The lemma is proved. 

In what follows we will denote 𝑔(𝑡) = (𝑔_(𝑡), 𝑔+(𝑡)), where the vector-

functions 𝑔_(𝑡) and 𝑔+(𝑡) are of dimensions r and p-r, respectively. 

As it is known from the theory of differential equations [87, р. 150], system 

(1.2.1) admits a unique bounded on ℝ solution 𝜑(𝑡) = (𝜑_(𝑡), 𝜑+(𝑡)), 

 

𝜑_(𝑡) = ∫ 𝑒𝐴_(𝑡−𝑠)𝑔_(𝑠)𝑑𝑠

𝑡

−∞

, 𝜑+(𝑡) = − ∫ 𝑒𝐴+(𝑡−𝑠)𝑔+(𝑠)𝑑𝑠

∞

𝑡

,            (1.2.3) 
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if the function 𝑔(𝑡) is bounded on ℝ.  One can confirm that 𝑠𝑢𝑝
𝑡∈ℝ

||𝜑(𝑡)|| ≤
2𝑀𝑔𝐾

𝛼
, 

where 𝑀𝑔 = 𝑠𝑢𝑝
𝑡∈ℝ

||𝑔(𝑡)||. Moreover, 𝜑(𝑡) is periodic, quasi-periodic, or almost 

periodic if the perturbation function 𝑔(𝑡) is respectively of the same type. 

The following theorem is concerned with the unpredictable solution of system 

(1.2.1). 

Theorem 1.2.1. Assume that g(t) is an unpredictable function and condition (C) 

is valid. Then the system (1.2.1) possesses a unique unpredictable solution. 

Additionally, if all eigenvalues of the matrix A have negative real parts, then the 

unpredictable solution is uniformly asymptotically stable. 

Proof. The boundedness of 𝑔(𝑡) implies that the system (1.2.1) admits a 

unique bounded solution 𝜑(𝑡) = (𝜑_(𝑡), 𝜑+(𝑡)), which satisfies (1.2.3). Moreover, 

the bounded solution is uniformly asymptotically stable provided that all eigenvalues 

of the matrix A have negative real parts. Hence, it is sufficient to prove that 𝜑(𝑡) is an 

unpredictable function. 

The function 𝜑(𝑡) is uniformly continuous since its derivative is bounded. 

According to the Poisson stability of 𝑔(𝑡), there exists a sequence {𝑡𝑛} with 𝑡𝑛 → ∞ 

as 𝑛 → ∞ such that ||𝑔(𝑡 + 𝑡𝑛) − 𝑔(𝑡)|| → 0 uniformly on compact subsets of ℝ. 

One can easily find that: 

 

||𝜑−(𝑡 + 𝑡𝑛) − 𝜑−(𝑡)|| = ‖∫ 𝑒𝐴_(𝑡−𝑠)[𝑔_(𝑠 + 𝑡𝑛) − 𝑔_(𝑠)]𝑑𝑠
𝑡

−∞

‖ ≤ 

 

≤ ∫ 𝐾𝑒𝛼_(𝑡−𝑠)‖𝑔_(𝑠 + 𝑡𝑛) − 𝑔_(𝑠)‖𝑑𝑠
𝑡

−∞

 

 

and 

 

||𝜑+(𝑡 + 𝑡𝑛) − 𝜑+(𝑡)|| = ‖∫ 𝑒𝐴+(𝑡−𝑠)[𝑔+(𝑠 + 𝑡𝑛) − 𝑔+(𝑠)]𝑑𝑠
∞

𝑡

‖ ≤ 

 

≤ ∫ 𝐾𝑒𝛼(𝑡−𝑠)‖𝑔+(𝑠 + 𝑡𝑛) − 𝑔+(𝑠)‖𝑑𝑠
∞

𝑡

. 

 

Fix an arbitrary positive number 𝜀 and a closed interval [𝑎, 𝑏], −∞ < 𝑎 < 𝑏 <
< ∞, of the real axis. We will show that for sufficiently large 𝑛 it is true that 

||𝜑(𝑡 + 𝑡𝑛) − 𝜑(𝑡)|| < 𝜀 on [𝑎, 𝑏]. Let us choose numbers 𝑐 < 𝑎, 𝑑 > 𝑏, 𝜉 > 0 such 

that  
2𝑀𝑔𝐾

𝛼
𝑒−𝛼(𝑎−𝑐) ≤

𝜀

4
 ,

2𝑀𝑔𝐾

𝛼
𝑒−𝛼(𝑑−𝑏) ≤

𝜀

4
 , and 

𝐾𝜉

𝛼
 ≤

𝜀

4
 . 

Consider n sufficiently large such that ||𝑔(𝑡 + 𝑡𝑛) − 𝑔(𝑡)|| < 𝜉 for 𝑡 ∈ [𝑐, 𝑑]. 
Then we have for all 𝑡 ∈ [𝑎, 𝑏] that: 
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||𝜑−(𝑡 + 𝑡𝑛) − 𝜑−(𝑡)|| ≤ ∫ 𝐾𝑒−𝛼(𝑡−𝑠)‖𝑔_(𝑠 + 𝑡𝑛) − 𝑔_(𝑠)‖𝑑𝑠
𝑐

−∞

+ 

 

 + ∫ 𝐾𝑒−𝛼(𝑡−𝑠)‖𝑔_(𝑠 + 𝑡𝑛) − 𝑔_(𝑠)‖𝑑𝑠
𝑡

𝑐

≤ 

 

≤ ∫ 2𝑀𝑔𝐾𝑒−𝛼(𝑡−𝑠)𝑑𝑠
𝑐

−∞

+ ∫ 𝐾𝜉𝑒−𝛼(𝑡−𝑠)𝑑𝑠
𝑡

𝑐

<
2𝑀𝑔𝐾

𝛼
𝑒−𝛼(𝑎−𝑐) +

𝐾𝜉

𝛼
≤

𝜀

2
, 

 

and similarly, one can show that: 

 

||𝜑+(𝑡 + 𝑡𝑛) − 𝜑+(𝑡)|| ≤ ∫ 𝐾𝑒𝛼(𝑡−𝑠)‖𝑔+(𝑠 + 𝑡𝑛) − 𝑔+(𝑠)‖𝑑𝑠
𝑑

𝑡

+ 

 + ∫ 𝐾𝑒𝛼(𝑡−𝑠)‖𝑔+(𝑠 + 𝑡𝑛) − 𝑔+(𝑠)‖𝑑𝑠
∞

𝑑

≤ 

 

≤ ∫ 𝐾𝜉𝑒𝛼(𝑡−𝑠)𝑑𝑠
𝑑

𝑡

+ ∫ 2𝑀𝑔𝐾𝑒𝛼(𝑡−𝑠)𝑑𝑠
∞

𝑑

<
𝐾𝜉

𝛼
+

2𝑀𝑔𝐾

𝛼
𝑒−𝛼(𝑑−𝑏) ≤

𝜀

2
 . 

 

Thus, for sufficiently large 𝑛 it is true that: 

 
‖𝜑(𝑡 + 𝑡𝑛) − 𝜑(𝑡)‖ ≤ ‖𝜑+(𝑡 + 𝑡𝑛) − 𝜑+(𝑡)‖ + ‖𝜑_(𝑡 + 𝑡𝑛) − 𝜑_(𝑡)‖ < 𝜀 

 

for 𝑡 ∈ [𝑎, 𝑏]. 
Next, we will show that the existence of a sequence {�̅�𝑛}, �̅�𝑛 → ∞ as 𝑛 → ∞ , 

and positive numbers 𝜀0̅, 𝛿 such that ‖𝜑(𝑡 + 𝑡𝑛) − 𝜑(𝑡)‖ ≥ 𝜀0̅ for 𝑡 ∈ [�̅�𝑛 − 𝛿, �̅�𝑛 +
+𝛿] . 

According to uniform continuity of 𝑔(𝑡), there exists a positive number 𝛿̅, 
which does not depend on the sequences {𝑡𝑛} and {𝑢𝑛}, such that the inequalities: 

 

‖𝑔(𝑡 + 𝑡𝑛) − 𝑔(𝑡𝑛 + 𝑢𝑛)‖ ≤
𝜀0

4√𝑝
, 

 

and 

 

‖𝑔(𝑡) − 𝑔(𝑢𝑛)‖ ≤
𝜀0

4√𝑝
 

 

are valid for every t∈ [𝑢𝑛 − 𝛿̅ , 𝑢𝑛 + 𝛿̅] and 𝑛 ∈ ℕ .  
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Fix an arbitrary natural number n, and suppose that 𝑔(𝑡) = (𝑔1(𝑡), . . . , 𝑔𝑝(𝑡)), 

where each 𝑔𝑘(𝑡), 𝑘 = 1,2, . . . , 𝑝, is a real valued function. It can be verified that 

there exists an integer 𝑗𝑛, 1 ≤ 𝑗𝑛 ≤ 𝑝, such that: 

 

|𝑔𝑗𝑛
(𝑡𝑛 + 𝑢𝑛) − 𝑔𝑗𝑛

(𝑢𝑛)| ≥
𝜀0

√𝑝
 . 

Hence, we have 

 

|𝑔𝑗𝑛
(𝑡 + 𝑢𝑛) − 𝑔𝑗𝑛

(𝑡)| ≥ 

 

≥ |𝑔𝑗𝑛
(𝑡𝑛 + 𝑢𝑛) − 𝑔𝑗𝑛

(𝑢𝑛)| − |𝑔𝑗𝑛
(𝑡 + 𝑢𝑛) − 𝑔𝑗𝑛

(𝑡𝑛 + 𝑢𝑛)| − 

 

−|𝑔𝑗𝑛
(𝑡) − 𝑔𝑗𝑛

(𝑢𝑛)| ≥
𝜀0

2√𝑝
                                                                      (1.2.4) 

 

for 𝑡 ∈ [𝑢𝑛 − 𝛿̅ , 𝑢𝑛 + 𝛿̅].  

One can confirm that there exist numbers 𝑠1
𝑛, 𝑠2

𝑛, … , 𝑠𝑝
𝑛 in the interval [𝑢𝑛 −

−𝛿̅ , 𝑢𝑛 + 𝛿̅] such that the equation: 

 

|| ∫ (𝑔(𝑠 + 𝑡𝑛) − 𝑔(𝑠))𝑑𝑠

𝑢𝑛+�̅�

𝑢𝑛−�̅�

|| = 2𝛿̅[∑(𝑔𝑖(

𝑝

𝑖=1

𝑠𝑖
𝑛 + 𝑡𝑛) − 𝑔𝑖(𝑠𝑖

𝑛))2]1/2 

 

is valid. Using inequality (1.2.4) we obtain that: 

 

|| ∫ (𝑔(𝑠 + 𝑡𝑛) − 𝑔(𝑠))𝑑𝑠

𝑢𝑛+�̅�

𝑢𝑛−�̅�

|| ≥ 2𝛿̅|𝑔𝑗𝑛
(𝑠𝑖

𝑛 + 𝑡𝑛) − 𝑔𝑗𝑛
(𝑠𝑗𝑛

𝑛 )| ≥
𝛿̅𝜀0

√𝑝
 . 

 

By means of the equation: 
 

𝜑(𝑡𝑛 + 𝑢𝑛 + 𝛿̅) − 𝜑(𝑡𝑛 + 𝛿̅) = 𝜑(𝑡𝑛 + 𝑢𝑛 − 𝛿̅) − 𝜑(𝑢𝑛 −  �̅�) + 

 

+ ∫ 𝐴[𝜑(𝑠 + 𝑡𝑛) − 𝜑(𝑠)]𝑑𝑠 + ∫ [𝑔(𝑠 + 𝑡𝑛) − 𝑔(𝑠)]𝑑𝑠.

𝑢𝑛+�̅�

𝑢𝑛−�̅�

𝑢𝑛+�̅�

𝑢𝑛−�̅�

 

 

One can obtain that: 

 

‖𝜑(𝑡𝑛 + 𝑢𝑛 + 𝛿̅) − 𝜑(𝑡𝑛 + 𝛿̅)‖ ≥ 
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≥
𝛿̅𝜀0

√𝑝
 − (1 + 2𝛿̅‖𝐴‖) sup

𝑡∈[𝑢𝑛 − �̅�,𝑢𝑛 + �̅�]

‖𝜑(𝑡 + 𝑡𝑛)  −  𝜑(𝑡)‖. 

 

Thus, sup
𝑡∈[𝑢𝑛 − �̅�,𝑢𝑛 + �̅�]

‖𝜑(𝑡 + 𝑡𝑛)  −  𝜑(𝑡)‖ ≥
�̅�𝜀0

2(1+�̅�‖𝐴‖)√𝑝
 . 

Now, suppose that sup
𝑡∈[𝑢𝑛 − �̅�,𝑢𝑛 + �̅�]

‖𝜑(𝑡 + 𝑡𝑛)  −  𝜑(𝑡)‖ = ‖𝜑(𝑡𝑛 + �̅�𝑛)  −  𝜑(�̅�𝑛)‖ 

for some �̅�𝑛 ∈ [𝑢𝑛  −  𝛿̅, 𝑢𝑛  +  𝛿̅], and let us denote: 

𝜀0̅ =
𝛿̅𝜀0

4(1 + 𝛿̅‖𝐴‖)√𝑝
 

 

and 

 

𝛿 =
𝛿̅𝛼𝜀0

8𝑀𝑔(1 + 𝛿̅‖𝐴‖)(𝛼 + 2𝐾‖𝐴‖)√𝑝
 . 

 

If 𝑡 ∈ [�̅�𝑛  −  𝛿̅, �̅�𝑛  +  𝛿̅], then we have: 

 

‖𝜑(𝑡 + 𝑡𝑛) − 𝜑(𝑡)‖ ≥ ‖𝜑(𝑡𝑛 + �̅�𝑛) − 𝜑(�̅�𝑛)‖ − ∫ ||𝐴||||𝜑(𝑠 + 𝑡𝑛) − 𝜑(𝑠)||𝑑𝑠
𝑡

𝑢𝑛

− 

 

− ∫ ||𝑔(𝑠 + 𝑡𝑛) − 𝑔(𝑠)||𝑑𝑠
𝑡

𝑢𝑛

≥
𝛿̅𝜀0

2(1 + 𝛿̅||𝐴||)√𝑝
 − 

4𝛿𝑀𝑔𝐾||𝐴||

𝛼
−  2𝛿𝑀𝑔 =  𝜀0̅. 

 

Hence, ‖𝜑(𝑡 + 𝑡𝑛) − 𝜑(𝑡)‖ ≥ 𝜀0̅ for each 𝑡 from the intervals [�̅�𝑛  −  𝛿̅, �̅�𝑛  +  𝛿̅],  

𝑛 ∈ ℕ. One can confirm that the sequence {�̅�𝑛} diverges to infinity. Consequently, 

𝜑(𝑡) is the unique unpredictable solution of system (1.2.1). 

Example 1. It was shown in paper [3, р. 86] that the presence of an 

unpredictable function is inevitably accompanied with Poincare chaos. Therefore, we 

can look for a confirmation of the results for unpredictability observing irregularity in 

simulations. The approach is effective for asymptotically stable unpredictable 

solutions, and it is just illustrative for hyperbolic systems with unstable solutions. In 

the latter case we rely on the fact that any solution becomes unpredictable ultimately. 

Consider the system: 

 

{
𝑥1

′ = −2𝑥1 + 2𝑥2 − 50Θ(t)

𝑥2
′ = 𝑥1 − 3𝑥2 − 5Θ3(𝑡),

                                        (1.2.5) 

 

where Θ(𝑡) = ∫ 𝑒−2.5(𝑡−𝑠)Ω(𝑠)𝑑𝑠,
𝑡

−∞
 is the unpredictable function defined in section 

1. The eigenvalues of the matrix of coefficients of system (1.2.5) are −2 and −0.5. 

One can confirm that the perturbation function (−50Θ(𝑡), −5Θ3(𝑡)) is unpredictable 
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in accordance with Properties 1 and 3. By Theorem 1.2.1 there is an asymptotically 

stable unpredictable solution (𝑥1(𝑡), 𝑥2(𝑡)) of system (1.2.5). Consequently, any 

solution of the equation behaves irregularly ultimately. This is seen from the 

simulation of the solution with 𝑥1(0) = 0,18, 𝑥2(0) = 0,01 in figure 3. 

 

 
 

Figure 3 – The time series of the 𝑥1 and 𝑥2 coordinates of system (2.1.8) with the 

initial conditions 𝑥1(0) = 0,18, 𝑥2(0) = 0,01. The figure manifests the irregular 

behavior of the solution 

 

The next example is devoted to a system of differential equations whose matrix 

of coefficients admit both positive and negative eigenvalues. 

Example 2. Let us take into account the system:  

 

{
𝑦1

′ = −1000𝑦1 + 0.23𝑦2 + 120𝑥2
3(𝑡) + 160

𝑦2
′ = 6𝑦1 + 0.000002𝑦2 − 0.1𝑥1(𝑡) + 20,

                                        (1.2.6) 

 

where (𝑥1(𝑡), 𝑥2(𝑡)) is the solution of (1.2.5) depicted in figure 1. The eigenvalues of 

the matrix of coefficients of system (1.2.6) are −1000 and 0.00138. The perturbation 

function (120𝑥2
3(𝑡) + 160, −0.1𝑥1(𝑡) + 20) is unpredictable. According to the 

Theorem 1.2.1, system (1.2.6) possesses a unique unpredictable solution. The 

simulation results for system (1.2.6) corresponding to the initial conditions 𝑦1(0) =
0 and 𝑦2(0) = 0.1 are shown in figure 4. The time series of both 𝑦1 and 𝑦2 

coordinates in the figure confirm the presence of irregularity in the dynamics of 

system (1.2.6). 
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Figure 4 – The time series for the 𝑦1 and 𝑦2 coordinates of system (1.2.6) with the 

initial conditions 𝑦1(0) = 0, 𝑦2(0) = 0.1. The irregular behavior of the solution 

reveals the presence of an unpredictable solution in the dynamics of (1.2.6). 

 

1.3 Hyperbolic quasilinear systems 

The main object of the present section is the system of quasilinear differential 

equations: 

 

𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝑓(𝑥(𝑡)) + 𝑔(𝑡),                     (1.3.1) 

 

where 𝑥(𝑡) ∈ ℝ𝑝, p is a fixed natural number, the function 𝑓: ℝ𝑝 → ℝ𝑝 is continuous 

in all of its arguments, 𝑓(0,0, . . . ,0) = (0,0, . . . ,0), and all eigenvalues of the constant 

matrix 𝐴 ∈ ℝ𝑝×𝑝 have nonzero real parts. We assume that ℜ𝑒(𝜆𝑖) < 0, 𝑖 = 1,2, … , 𝑞, 
and ℜ𝑒(𝜆𝑖) > 0, 𝑖 = 𝑞 + 1, . . . , 𝑝, where 1 ≤ 𝑞 < 𝑝, 𝜆𝑖 , 𝑖 = 1,2, . . . , 𝑝, are the 

eigenvalues of the matrix 𝐴, and ℜ𝑒(𝜆𝑖) denotes the real part of the eigenvalue 𝜆𝑖. 

Moreover, the function 𝑔: ℝ → ℝ𝑝 is unpredictable with positive numbers 𝜀0, 𝛿 and 

sequences {𝑡𝑛}, {𝑢𝑛} determined in Definition 1.1.1. Our purpose is to prove that 

system (1.3.1) possesses a unique unpredictable solution, provided that the function 

𝑔(𝑡) is unpredictable and the solution is uniformly exponentially stable if all 

eigenvalues of the matrix 𝐴 have negative real parts.  

The following condition on system (1.3.1) is required. 

(𝐶1) There exists a positive number 𝐿𝑓 such that ||𝑓(𝑥1) − 𝑓(𝑥2)|| ≤ 

≤ 𝐿𝑓||𝑥1 − 𝑥2|| for all 𝑥1, 𝑥2 ∈ ℝ𝑝.  

It is known that one can find a regular 𝑝 ×  𝑝 matrix 𝐵 such that the 

transformation 𝑥 =  𝐵𝑦 reduces system (1.3.1) to the system: 

 

    𝑦′(𝑡) = 𝐶𝑦(𝑡) + 𝐹(𝑦) + 𝐺(𝑡),          (1.3.2) 

 

where 𝐶 = 𝐵−1𝐴𝐵, 𝐹(𝑦) = 𝐵−1𝑓(𝐵𝑦), and 𝐺(𝑡) = 𝐵−1𝑔(𝑡). In system (1.3.2), the 

matrix 𝐶 is of the form diag(𝐶_, 𝐶+),  where the eigenvalues of the 𝑞 × 𝑞 matrix 𝐶_ 
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and (𝑝 − 𝑞) × (𝑝 − 𝑞) matrix 𝐶+ respectively have negative and positive real parts. 

Let us denote 𝐹(𝑦) = (𝐹_(𝑦), 𝐹+(𝑦)) and 𝐺(𝑡) = (𝐺_(𝑡), 𝐺+(𝑡)), where the vector-

functions 𝐹_ and 𝐺_ are of dimension q and the vector-functions 𝐹+ and 𝐺+ are of 

dimension p-q. 

It can be verified that 𝐹(0,0, . . . ,0) = (0,0, . . .0) ∈ ℝ𝑝 the function 𝐹 is 

Lipschitzian with the Lipschitz constant: 

 

𝐿𝐹 = ||𝐵|| ||𝐵−1||𝐿𝑓 , 

 

under the condition (C1), that is, ||𝐹(𝑦1) − 𝐹(𝑦2)|| ≤ 𝐿𝐹||𝑦1 − 𝑦2|| for all 𝑦1, 𝑦2 ∈ 

∈ ℝ𝑝. In addition, according to the Lemma 1.2.1 from the previous section, the 

function 𝐺(𝑡) is unpredictable. 

Fix a number 𝐻 >  0 such that ||𝑔(𝑡)|| < 𝐻. Then ||𝐺(𝑡)|| < ||𝐵−1||𝐻. 

Next the main result is formulated for system (1.3.2) and interpreted for system 

(1.3.1). 

One can confirm that there exist numbers 𝐾 ≥ 1 and 𝛼 > 0 such that ||𝑒𝐶𝑡|| ≤ 

≤ 𝐾𝑒−𝛼𝑡 for all 𝑡 ≥ 0 and ||𝑒𝐶+𝑡|| ≤ 𝐾𝑒𝛼𝑡 for all 𝑡 ≤ 0. 

The following conditions are needed. 

 

 (𝐶2) 
2

𝛼
𝐾(||𝐵||||𝐵−1||𝐿𝑓 + 1) < 1. 

 

According to the theory of differential equations [87, p. 150], a function 

𝜑(𝑡) = (𝜑_(𝑡), 𝜑+(𝑡)) which is bounded on the whole real axis is a solution of 

system (1.3.2) if only if it satisfies the equations: 

 

𝜑_(𝑡) = ∫ 𝑒𝐶_(𝑡−𝑠)[𝐹_(𝜑(𝑠)) + 𝐺_(𝑠)]𝑑𝑠,
𝑡

−∞

 

                 (1.3.3) 

𝜑+(𝑡) = − ∫ 𝑒𝐶+(𝑡−𝑠)[𝐹+(𝜑(𝑠)) + 𝐺+(𝑠)]𝑑𝑠.
∞

𝑡

 

 

Let 𝑈 be the set of all uniformly continuous and bounded functions 

𝜓(𝑡): ℝ → ℝ𝑝 such that ||𝜓||1 ≤ ||𝐵−1||𝐻, where the norm ||. ||1 is defined by 

||𝜓||1 = sup
𝑡∈ℝ

||𝜓(𝑡)|| and 𝜓(𝑡 + 𝑡𝑛) → 𝜓(𝑡) and 𝑛 → ∞ uniformly on each compact 

subset of ℝ. 

Lemma 1.3.2. Suppose that the conditions (C1) −(C2) are valid then the system 

(1.3.2) possesses a unique solution ω(t) ∈ U such that sup
t∈ℝ

||ω(t)|| ≤ ||B−1||H. 

Proof. In the proof, we will show that system (1.3.2) possesses a unique 

Poisson stable solution by using the contraction mapping principle, and this implies 

the existence of a unique Poisson stable solution of system (1.3.1). 
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Since the function 𝑔(𝑡) is Poisson stable, there exists a sequence {𝑡𝑛}, 𝑡𝑛 → ∞ 

as 𝑛 → ∞, such that 𝑔(𝑡 + 𝑡𝑛) → 𝑔(𝑡) as 𝑛 → ∞ uniformly on each compact subset 

of ℝ. 

Define an operator Π on U through the equations: 

 

Π_𝜓(𝑡) = ∫ 𝑒𝐶_(𝑡−𝑠)[𝐹_(𝜓(𝑠)) + 𝐺_(𝑠)]𝑑𝑠

𝑡

−∞

 

 

and 

 

Π+𝜓(𝑡) = − ∫ 𝑒𝐶+(𝑡−𝑠)[𝐹+(𝜓(𝑠)) + 𝐺+(𝑠)]𝑑𝑠

∞

𝑡

, 

 

such that Π𝜓(𝑡) = (Π_𝜓(𝑡), Π+𝜓(𝑡)). 
Fix an arbitrary function 𝜓(𝑡) that belongs to U. For all 𝑡 ∈ ℝ, we have: 

 

||Π−𝜓(𝑡)|| ≤ ∫ ||𝑒𝐶_(𝑡−𝑠)||||𝐹_(𝜓(𝑠)) + 𝐺_(𝑠)||𝑑𝑠 ≤

𝑡

−∞

 

 

≤ ∫ 𝐾(𝐿𝐹||𝜓(𝑠)|| + ||𝐵−1||𝐻)𝑒−𝛼(𝑡−𝑠)𝑑𝑠

𝑡

−∞

≤
1

𝛼
𝐾||𝐵−1||𝐻(||𝐵||||𝐵−1||𝐿𝑓 + 1) 

 

and 

||Π+𝜓(𝑡)|| ≤ ∫ ||𝑒𝐶+(𝑡−𝑠)|| ||𝐹+(𝜓(𝑠)) + 𝐺+(𝑠)|| 𝑑𝑠 ≤

∞

𝑡

 

 

≤ ∫ 𝐾(𝐿𝐹||𝜓(𝑠)|| + ||𝐵−1||𝐻)𝑒−𝛼(𝑡−𝑠)𝑑𝑠

∞

𝑡

≤
1

𝛼
𝐾||𝐵−1||𝐻(||𝐵||||𝐵−1||𝐿𝑓 + 1). 

 

Therefore, by condition (𝐶2) ||Π𝜓||1 ≤ ||𝐵−1||𝐻. 
Now, let us fix an arbitrary positive number 𝜀 and a compact subset [𝑎, 𝑏] of ℝ, 

where 𝑏 > 𝑎. Suppose that 𝑎0 and 𝑏0 are numbers satisfying 𝑎0 < 𝑎, 𝑏 < 𝑏0 such that 

the inequalities: 

 
2

𝛼
𝐾||𝐵−1||𝐻(||𝐵||||𝐵−1||𝐿𝑓 + 1)𝑒−𝛼(𝑎−𝑎0) <

𝜀

4
,                       (1.3.4) 
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2

𝛼
𝐾||𝐵−1||𝐻(||𝐵||𝐿𝑓 + 1)𝑒𝛼(𝑏−𝑏0) <

𝜀

4
,                          (1.3.5) 

 

are valid, and let 𝛾 be a number such that: 

 

𝛾 >
4𝐾||𝐵−1||(||𝐵||𝐿𝑓 + 1)

𝛼
.                                           (1.3.6) 

 

There exists a natural number 𝑛0 such that if 𝑛 ≥ 𝑛0, then ||𝐺(𝑡 + 𝑡𝑛) + 

+𝐺(𝑡)|| <
𝜀

𝛾
 and ||𝜓(𝑡 + 𝑡𝑛) − 𝜓(𝑡)|| <

𝜀

𝛾
 for all 𝑡 ∈ [𝑎0, 𝑏0]. 

Therefore, one can verify for 𝑛 ≥ 𝑛0,  and 𝑡 ∈ [𝑎0, 𝑏0] that: 

 

||Π_𝜓(𝑡 + 𝑡𝑛) − Π_𝜓(𝑡)|| ≤ ∫ ||𝑒𝐶_(𝑡−𝑠)||(||𝐹_(𝜓(𝑠 + 𝑡𝑛)) − 𝐹_(𝜓(𝑠))|| +

𝑎0

−∞

 

 

+||𝐺_(𝑠 + 𝑡𝑛) − 𝐺_(𝑠)||)𝑑𝑠 + ∫ ||𝑒𝐶_(𝑡−𝑠)||(||𝐹_(𝜓(𝑠 + 𝑡𝑛)) − 𝐹_(𝜓(𝑠))|| +

𝑡

𝑎0

 

 

+||𝐺_(𝑠 + 𝑡𝑛) − 𝐺_(𝑠)||)𝑑𝑠 ≤ 

 

≤
2

𝛼
𝐾(||𝐵||||𝐵−1||𝐿𝑓||𝐵−1||𝐻 + ||𝐵−1𝐻||)𝑒−𝛼(𝑎−𝑎0) + 

 

+
𝜀

𝛼𝛾
𝐾(||𝐵||||𝐵−1||𝐿𝑓 + ||𝐵−1||)(1 − 𝑒−𝛼(𝑡−𝑎0)) 

 

and 

 

||Π+𝜓(𝑡 + 𝑡𝑛) − Π+𝜓(𝑡)|| ≤ ∫ ||𝑒𝐶+(𝑡−𝑠)||(||𝐹+(𝜓(𝑠 + 𝑡𝑛)) − 𝐹+(𝜓(𝑠))|| +

∞

𝑏0

 

 

+||𝐺+(𝑠 + 𝑡𝑛) − 𝐺+(𝑠)||)𝑑𝑠 + ∫ ||𝑒𝐶+(𝑡−𝑠)||(||𝐹+(𝜓(𝑠 + 𝑡𝑛)) − 𝐹+(𝜓(𝑠))|| +

𝑏0

𝑡

 

 

+||𝐺+(𝑠 + 𝑡𝑛) − 𝐺+(𝑠)||)𝑑𝑠 ≤ 

 

        ≤
2

𝛼
𝐾(||𝐵||||𝐵−1||𝐿𝑓||𝐵−1||𝐻 + ||𝐵−1𝐻||)𝑒−𝛼(𝑡−𝑏0) + 



30 

 

 +
𝜀

𝛼𝛾
𝐾(||𝐵||||𝐵−1||𝐿𝑓 + ||𝐵−1||)(1 − 𝑒−𝛼(𝑡−𝑏)). 

 

Now, using the inequalities (1.3.4) to (1.3.6), one can obtain for 𝑡 ∈ [𝑎, 𝑏] that 

 

||Π_𝜓(𝑡 + 𝑡𝑛) − Π_𝜓(𝑡)|| <
𝜀

2
 

 

and 

 

||Π+𝜓(𝑡 + 𝑡𝑛) − Π+𝜓(𝑡)|| <
𝜀

2
 

 

provided that 𝑛 ≥ 𝑛0. Hence, if 𝑛 ≥ 𝑛0, then the inequality ||Π𝜓(𝑡 + 𝑡𝑛) − 

−Π𝜓(𝑡)|| < 𝜀 is valid for all 𝑡 ∈ [𝑎, 𝑏], and therefore Π𝜓(𝑡 + 𝑡𝑛) → Π𝜓(𝑡) 

uniformly as 𝑛 → ∞ on each compact subset of ℝ. 
 Additionally, it can be shown that Π𝜓(𝑡) is uniformly continuous since its 

derivative is bounded. 

Next, we will show that the operator Π → 𝑈 is contractive. Let 𝜓1(𝑡) and 

𝜓2(𝑡) be functions in 𝑈. Then, we have that  

 

||Π_𝜓1(𝑡) − Π_𝜓2(𝑡)|| ≤ ∫ ||𝑒𝐶_(𝑡−𝑠)||||𝐹_(

𝑡

−∞

𝜓1(𝑠)) − 𝐹_(𝜓2(𝑠))||𝑑𝑠 ≤ 

 

≤
𝐾||𝐵||||𝐵−1||𝐿𝑓

𝛼
||𝜓1 − 𝜓2||0 

 

and 

 

||Π+𝜓1(𝑡) − Π+𝜓2(𝑡)|| ≤ ∫ ||𝑒𝐶+(𝑡−𝑠)||||𝐹+(

∞

𝑡

𝜓1(𝑠)) − 𝐹+(𝜓2(𝑠))||𝑑𝑠 ≤ 

 

≤
𝐾||𝐵||||𝐵−1||𝐿𝑓

𝛼
||𝜓1 − 𝜓2||0. 

 

Therefore, the inequality 

  

||Π𝜓1(𝑡) − Π𝜓2(𝑡)|| ≤
𝐾||𝐵||||𝐵−1||𝐿𝑓

𝛼
||𝜓1 − 𝜓2||0 

 

holds, and according to the condition (𝐶2) the operator Π: 𝑈 → 𝑈 is contractive. 
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By contraction theorem there exists fixed point of the operator Π which is a 

bonded solution 𝜔(𝑡) of the system (1.3.2) and it satisfies an inequality 

sup
𝑡∈ℝ

||𝜔(𝑡)|| ≤ ||𝐵−1||𝐻. 

Now we will show that the sequence 𝜔(𝑡 + 𝑡𝑛) converges on any compact 

interval on ℝ. For this reason, consider the sequence of approximations 𝜔𝑘(𝑡), 𝑘 = 

= 0,1, . . ., such that 𝜔0(𝑡) = 𝐺(𝑡) and 𝜔𝑘+1(𝑡) = Π𝜔𝑘(𝑡). This sequence uniformly 

converges on ℝ to the function 𝜔(𝑡) and each function 𝜔𝑘(𝑡) satisfies the condition 

that 𝜔𝑘(𝑡 + 𝑡𝑛) converges uniformly on any compact subinterval of the real axis. 

Thus, we have that: 

 
|𝜔(𝑡 + 𝑡𝑛) − 𝜔(𝑡)| ≤ |𝜔(𝑡 + 𝑡𝑛) − 𝜔𝑘(𝑡 + 𝑡𝑛)| + |𝜔𝑘(𝑡 + 𝑡𝑛) − 𝜔𝑘(𝑡)| + 

 

+|𝜔𝑘(𝑡) − 𝜔(𝑡)| ≤ 𝜀, 
 

for a fixed positive 𝜀 with sufficiently large 𝑘 and 𝑛. This is why, 𝜔(𝑡 + 𝑡𝑛), 
𝑛 = 1,2, . . ., converges to 𝜔(𝑡) uniformly on each compact interval of the real axis. 

The lemma is proved. 

 The next theorem is concerned with the unpredictable solution of system 

(1.3.1). 

Theorem 1.3.1. Suppose that conditions (C1) − (C2) are valid, then the system 

(1.3.1) possesses a unique unpredictable solution. Moreover, the unpredictable 

solution is uniformly exponentially stable if all eigenvalues of the matrix A have 

negative real parts. 

Proof. According to Lemma 1.3.2, system (1.3.1) possesses a unique Poisson 

stable solution 𝜔(𝑡). Therefore, to prove that system (1.3.1) admits a unique 

unpredictable solution, it remains to show that 𝜔(𝑡) satisfies the unpredictable 

property. 

We will show the existence of a sequence �̅�𝑛, �̅�𝑛 → ∞ as 𝑛 → ∞, and positive 

numbers 𝜀0̅, 𝛿̅ such that ||𝜔(𝑡 + 𝑡𝑛) − 𝜔(𝑡𝑛)|| ≥ 𝜀0̅ for 𝑡 ∈ [�̅�𝑛 − 𝛿̅, �̅�𝑛 + 𝛿̅]. 

One can find a positive number 𝜅 and natural numbers 𝑙, 𝑘 and 𝑗 =  1, . . . , 𝑝, 

such that 

 

𝜅 < 𝛿,        (1.3.7) 

 

𝜅(1/2 − (
1

𝑙
+

2

𝜅
)(𝐿 + ||𝐴||)) >

3

2𝑙
 ,                                    (1.3.8) 

          

||𝜔(𝑡 + 𝑠) − 𝜔(𝑡)|| < 𝜀0̅ 𝑚𝑖𝑛 (
1

𝑘
+

2

4𝑙
), 𝑡 ∈ ℝ, |𝑠| < 𝜅.                     (1.3.9) 

 

Let the numbers 𝜅, 𝑙 and 𝑘 as well as a number 𝑛 ∈ ℕ, be fixed. Denote ∆= ||𝜔(𝑡𝑛 + 

+𝑢𝑛) − 𝜔(𝑢𝑛)|| and consider two cases (i)∆≥ 𝜀0/𝑙 and (ii)∆< 𝜀0/𝑙. 
 (i) By (1.3.9) we have that: 

||𝜔(𝑡 + 𝑡𝑛) − 𝜔(𝑡)|| ≥ ||𝜔(𝑡𝑛 + 𝑢𝑛) − 𝜔(𝑢𝑛)|| − ||𝜔(𝑢𝑛) − 𝜔(𝑡)|| − 
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−||𝜔(𝑡 + 𝑡𝑛) − 𝜔(𝑡𝑛 + 𝑢𝑛)|| ≥
𝜀0

𝑙
−

𝜀0

4𝑙
−

𝜀0

4𝑙
=

𝜀

2𝑙
,             (1.3.10) 

            

if 𝑡 ∈ [𝑢𝑛 − 𝜅, 𝑢𝑛 + 𝜅] and  𝑛 ∈ ℕ. 
 (ii) One can find that from (1.3.9) it follows that 

 

||𝜔(𝑡 + 𝑡𝑛) − 𝜔(𝑡)|| <
𝜀0

𝑙
+

𝜀0

𝑘
+

𝜀0

𝑘
= 𝜀0(

1

𝑙
+

2

𝑘
),                      (1.3.11) 

 

if 𝑡 ∈ [𝑢𝑛, 𝑢𝑛 + 𝜅]. 
It is true that 

 

𝜔(𝑡 + 𝑡𝑛) − 𝜔(𝑡) =  𝜔(𝑡𝑛 + 𝑢𝑛) − 𝜔(𝑢𝑛) + ∫ 𝐴[𝜔(𝑠 + 𝑡𝑛) − 𝜔(𝑠)]𝑑𝑠 +

𝑡

𝑢𝑛

 

+ ∫[𝑓(𝜔(𝑠 + 𝑡𝑛)) − 𝑓(𝜔(𝑠))]𝑑𝑠 +

𝑡

𝑢𝑛

∫[𝑔(𝑠 + 𝑡𝑛) − 𝑔(𝑠)]𝑑𝑠.         (1.3.12)

𝑡

𝑢𝑛

 

 

We obtain from (1.3.7) -(1.3.9) and (1.3.11) that 

 

|𝜔𝑗(𝑡 + 𝑡𝑛) − 𝜔𝑗(𝑡)| ≥ ∫|𝑔𝑗(𝑠 + 𝑡𝑛) − 𝑔𝑗(𝑠)|𝑑𝑠

𝑡

𝑢𝑛

− 

 

− ∫ | ∑ 𝑎𝑖𝑗

𝑝

𝑗=1

[𝜔𝑖(𝑠 + 𝑡𝑛) − 𝜔𝑖(𝑠)]|𝑑𝑠

𝑡

𝑢𝑛

− ∫|𝑓𝑖(𝜔(𝑠 + 𝑡𝑛)) − 𝑓𝑖(𝜔(𝑠))|𝑑𝑠

𝑡

𝑢𝑛

− 

 

−|𝜔𝑗(𝑡𝑛 + 𝑢𝑛) − 𝜔𝑗(𝑢𝑛)| ≥
𝜅

2
𝜀0 − 𝜅||𝐴||𝜀0(

1

𝑙
+

2

𝑘
) − 𝜅𝐿𝜀0(

1

𝑙
+

2

𝑘
) −

𝜀0

𝑙
≥

𝜀0

2𝑙
, 

 

for  𝑡 ∈ [𝑢𝑛 + 𝜅/2, 𝑢𝑛 + 𝜅]. 
 Thus, ||𝜔(𝑡 + 𝑡𝑛) − 𝜔(𝑡)|| ≥ 𝜀0̅ =

𝜀0

2𝑙
 for each 𝑡 from the intervals 

[�̅�𝑛 − 𝛿̅, �̅�𝑛 + 𝛿̅], where �̅�𝑛 = 𝑢𝑛 +
3𝜅

4
, 𝛿̅ =

𝜅

4
, 𝑛 ∈ ℕ. Consequently, the bounded 

solution 𝜔(𝑡) is unpredictable. 

On the other hand, one can show in a similar way to the proof of Theorem 4.1 

[2, р. 257] that if all eigenvalues of the matrix 𝐴 have negative real parts, then the 

unpredictable solution of system (1.3.1) is uniformly exponentially stable under 

condition (𝐶3). 

Example 3. Consider the system  
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{
𝑥1

′ = −3𝑥1 + 2𝑥2 − 0.1𝑥2
3 + 20Θ(𝑡) + 3

𝑥2
′ = 𝑥1 − 2𝑥2 + 0.5𝑥1

2 − 15Θ(𝑡) − 2,
                                        (1.3.13) 

 

where Θ(𝑡) = ∫ 𝑒−2(𝑡−𝑠)Ω(𝑠)𝑑𝑠,
𝑡

−∞
 is the unpredictable function defined in section 1. 

The eigenvalues of the matrix of coefficients of system (1.3.13) are −1 and −4. By the 

properties of unpredictable function, it can be confirmed that the perturbation 

function (20Θ(𝑡) + 3, −15Θ(𝑡) − 2) is unpredictable. According to Theorem 1.3.1, 

there is a unique exponentially stable unpredictable solution (𝑥1(𝑡), 𝑥2(𝑡)) of system 

(1.3.13). Figures 5 and 6 present the function (𝑡) = (𝜓1(𝑡), 𝜓2(𝑡)) , which 

exponentially tends to the solution 𝑥(𝑡). 

 

 
 

Figure 5 – The time series of the 𝜓1(𝑡), 𝜓2(𝑡) coordinates with the initial value 

𝜓1(0) = 1.18, 𝜓2(0) = 1.01. The figure manifests the irregular behavior of the 

system 

 

 
 

Figure 6 – The irregular trajectory of the function 𝜓(𝑡) 
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 Example 4. Let us consider the system 

 

{
𝑦1

′ = 4𝑦1 − 0.021𝑦2
3 − 2𝑥2

3(𝑡)

𝑦2
′ = 7𝑦1 − 6𝑦2 − 0.014𝑦1

2 + 3𝑥1
3(𝑡),

                                        (1.3.14) 

 

where (𝑥1(𝑡), 𝑥2(𝑡)) is the unpredictable solution of system (1.3.13). The 

eigenvalues of the matrix of coefficients of system (1.3.14) are −6 and 4. The 

function 𝑥(𝑡) = = (−2𝑥2
3(𝑡),3𝑥1

3(𝑡)) is unpredictable, and therefore, the system 

possesses a unique unpredictable solution by Theorem 1.3.1. Figures 7 and 8 show 

the simulation results for the function 𝜙(𝑡), which approximates the solution 𝑦(𝑡) of 

the system (1.3.14).  

 

 
 

Figure 7 - The coordinates of the function 𝜙(𝑡) with initial conditions 𝜙1(0) = 0, 

𝜙2(0) = 0. The behavior of the function reveals the presence of an unpredictable 

solution in the dynamics of (1.3.14) 

 

 
 

Figure 8 - The trajectory of the function 𝜙(𝑡). One can observe the irregular behavior 

in the graph 
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1.4 Strongly unpredictable solutions of differential equations 

Consider the following differential equation: 

 

𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝑓(𝑡, 𝑥),                                 (1.4.1) 

 

where 𝑡 ∈ ℝ, 𝑥 ∈ ℝ𝑝, p is a fixed natural number, all eigenvalues of the constant 

matrix 𝐴 ∈ ℝ𝑝×𝑝 have negative real parts, 𝑓: ℝ × 𝐺 → ℝ𝑝, 𝑓 = (𝑓1, 𝑓2, . . . , 𝑓𝑝), 𝐺 = 

= {𝑥 ∈ ℝ𝑝, ||𝑥||1 < 𝐻}, where 𝐻 is a positive number. It is true that there exist two 

real numbers 𝐾 ≥ 1 and 𝛾 < 0 such that ||𝑒𝐴𝑡|| ≤ 𝐾𝑒𝛾𝑡 for all 𝑡 ≥ 0. 
One can see that the main difference between system (1.3.1) and system (1.4.1) 

is that the perturbation in the former one is less general than that of the latter one. 

Assume that the following conditions are valid: 

(C1) the function 𝑓(𝑡, 𝑥) is strongly unpredictable in the sence of Definition 

1.1.4, so that there exists a positive number 𝑀 such that sup
ℝ×𝐺

||𝑓(𝑡, 𝑥)|| = 𝑀 < ∞; 

(C2) there exists a positive constant 𝐿 such that the function 𝑓(𝑡, 𝑥) satisfies 

the inequality ||𝑓(𝑡, 𝑥1) − 𝑓(𝑡, 𝑥2)|| ≤ 𝐿||𝑥1 − 𝑥2|| for all 𝑡 ∈ ℝ, 𝑥1, 𝑥2 ∈ 𝐺; 

(C3) 𝛾 < −
𝐾𝑀

𝐻
; 

(C4) 𝛾 < −𝐾𝐿. 

Our purpose is to prove that the system (1.4.1) possesses a unique strongly 

unpredictable solution, provided that the function 𝑓(𝑡, 𝑥) is strongly unpredictable in 

t. Moreover, we prove that the solution is uniformly globally exponentially stable. 

Additionally, existence of an unpredictable solution, which is not strongly 

unpredictable, is considered for the system (1.4.1). 

Let 𝑈 be the set of all uniformly continuous functions 𝜓(𝑡) = (𝜓1, 𝜓2, . . . , 𝜓𝑝), 

𝜓𝑖 ∈ ℝ, 𝑖 = 1,2, . . . , 𝑝, such that ||𝜓||1 < 𝐻, and 𝜓(𝑡 + 𝑡𝑛) → 𝜓(𝑡) as 𝑛 → ∞ 

uniformly on each closed and bounded interval of the real axis, where sequence 𝑡𝑛 is 

the same as for function 𝑓(𝑡, 𝑥) in system (1.4.1). 

According to the theory of differential equations [88], a function 𝜔(𝑡) =
(𝜔1, 𝜔2, . . . , 𝜔𝑝) bounded on the whole real axis is a solution of system 𝑓(𝑡, 𝑥)  if 

only if the integral equation: 

 

𝜔(𝑡) = ∫ 𝑒𝐴(𝑡−𝑠)

𝑡

−∞

𝑓(𝑠, 𝜔(𝑠))𝑑𝑠, 𝑡 ∈ ℝ, 

 

is satisfied. 

Lemma 1.4.1. Suppose that conditions (C1) -(C4) are valid, then the system 

(1.4.1) possesses a unique solution ω(t) ∈ U. 
Proof. Define an operator Π on 𝑈 such that: 
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Π𝜓(𝑡) = ∫ 𝑒𝐴(𝑡−𝑠)

𝑡

−∞

𝑓(𝑠, 𝜓(𝑠))𝑑𝑠, 𝑡 ∈ ℝ.                                    (1.4.2) 

 

Fix an arbitrary function ψ(𝑡) that belongs to 𝑈. We have that: 

 

||Π𝜓(𝑡)|| = ∫ ||𝑒𝐴(𝑡−𝑠)||

𝑡

−∞

||𝑓(𝑠, 𝜓(𝑠))||𝑑𝑠 ≤
𝐾𝑀

|𝛾|
 

 

for all 𝑡 ∈ ℝ. Therefore, by condition (C3) it is true that ||Π𝜓||1 < 𝐻. 

 Fix an arbitrary positive 𝜀 and a closed interval [𝑎, 𝑏], −∞ < 𝑎 < 𝑏 < ∞, of 

the real axis. We will show that for sufficiently large 𝑛 it is true that ||Π𝜓(𝑡 + 𝑡𝑛) − 

−Π𝜓(𝑡)|| < 𝜀 on [𝑎, 𝑏]. Let us choose two numbers 𝑐 < 𝑎, and 𝜉 > 0 satisfying 

 
2𝐾𝑀

|𝛾|
𝑒𝛾(𝑎−𝑐) <

𝜀

2
                                                           (1.4.3) 

 

and 

  
𝐾

|𝛾|
𝜉(𝐿 + 1)[1 − 𝑒𝛾(𝑏−𝑐)] <

𝜀

2
.                                              (1.4.4) 

 

Theorem 1.4.1. If conditions (C1) -(C4) are fulfilled, then the system (1.4.1) 

admits a unique uniformly exponentially stable strongly unpredictable solution. 

Proof. According to Lemma 1.4.1, system (1.4.1) has a unique solution  

𝜔(𝑡) ∈ 𝑈. What is left is to verify that the unpredictability property is valid. 

One can find a positive number 𝜅, natural numbers 𝑙, 𝑘 such that for all 𝑗 = 1, . . . , 𝑝 

the following inequalities are valid, 

 

                                           𝜅 < 𝛿,                                                                                       (1.4.5) 

 

𝜅 (
1

2
− (

1

𝑙
+

2

𝑘
)(𝐿 + ||𝐴||)) >

3

2𝑙
,                                               (1.4.6) 

 

||𝜔(𝑡 + 𝑠) − 𝜔(𝑡)|| < 𝜀0𝑚𝑖𝑛 (
1

𝑘
,

1

4𝑙
) ,   𝑡 ∈ ℝ,   |𝑠| < 𝜅.              (1.4.7) 

 

 Let the numbers 𝜅, 𝑙, 𝑘 and 𝑗 as well as 𝑛 ∈ ℕ, be fixed. 

Denote ∆= |𝜔𝑗(𝑢𝑛 + 𝑡𝑛) − 𝜔𝑗(𝑢𝑛)| and consider two cases: (i) ∆≥ 𝜀0/𝑙,  

(ii) ∆< 𝜀0/𝑙 such the remaining proof falls into two parts. 

(i) We have that: 
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|𝜔𝑗(𝑡 + 𝑡𝑛) − 𝜔𝑗(𝑡)| ≥ |𝜔𝑗(𝑡𝑛 + 𝑢𝑛) − 𝜔𝑗(𝑢𝑛)|−|𝜔𝑗(𝑢𝑛) − 𝜔𝑗(𝑡)| − 

 

               −|𝜔𝑗(𝑡 + 𝑡𝑛) − 𝜔𝑗(𝑡𝑛 + 𝑢𝑛)| ≥
𝜀0

𝑙
−

𝜀0

4𝑙
−

𝜀0

4𝑙
=

𝜀

2𝑙
,                    (1.4.8) 

 

if 𝑡 ∈ [𝑢𝑛 − 𝜅, 𝑢𝑛 + 𝜅] and 𝑛 ∈ ℕ. 

(ii) It can easily find that (1.4.7) implies 

                    

||𝜔(𝑡 + 𝑡𝑛) − 𝜔(𝑡)|| <
𝜀0

𝑙
+

𝜀0

𝑘
+

𝜀0

𝑘
= 𝜀0 (

1

𝑙
+

2

𝑘
)                         (1.4.9) 

            

if  𝑡 ∈ [𝑢𝑛, 𝑢𝑛 + 𝜅]. 
From the last inequality and (1.4.5)- (1.4.7) it follows that 

 

|𝜔𝑗(𝑡 + 𝑡𝑛) − 𝜔𝑗(𝑡)| ≥ ∫ |𝑓𝑗(𝑠 + 𝑡𝑛, 𝜔(𝑠 + 𝑡𝑛)) −
𝑡

𝑢𝑛

𝑓𝑗(𝑠, 𝜔(𝑠 + 𝑡𝑛))|𝑑𝑠 − 

− ∫ |𝑓𝑗(𝑠, 𝜔(𝑠 + 𝑡𝑛)) −
𝑡

𝑢𝑛

𝑓𝑗(𝑠, 𝜔(𝑠))|𝑑𝑠 − ∫ | ∑ 𝑎𝑖𝑗[𝜔𝑗(𝑠 + 𝑡𝑛) − 𝜔𝑗(𝑠)]|𝑑𝑠 – 

𝑝

𝑗=1

𝑡

𝑢𝑛

 

 

−|𝜔𝑗(𝑡𝑛 + 𝑢𝑛) − 𝜔𝑗(𝑢𝑛)| ≥
𝜅

2
𝜀0 − 𝜅𝐿𝜀0(

1

𝑙
+

2

𝑘
) − 𝜅||𝐴||𝜀0(

1

𝑙
+

2

𝑘
) −

𝜀0

𝑙
≥

𝜀0

2𝑙
) 

 

for 𝑡 ∈ [𝑢𝑛 + 𝜅/2, 𝑢𝑛 + 𝜅]. 

 Thus, the solution 𝜔(𝑡) is strongly unpredictable with �̅�𝑛 = 𝑢𝑛 +
3𝜅

4
, �̅� =

𝜅

4
 . 

The uniformly exponentially stability of the solution 𝜔(𝑡) can be verified as 

stability of a bounded solution in [87, р. 100; 88, р. 40]. The theorem is proved.  

We have considered the problem of existence and uniqueness of strongly 

unpredictable solutions. In what follows, we will search for quasilinear systems with 

unpredictable solutions, which are not strongly unpredictable. For this reason, assume 

that the following condition is valid. 

(C5) The function 𝑓(𝑡, 𝑥) is unpredictable in the sense of Definition 1.1.3. 

 Theorem 1.4.2. Suppose that the conditions (C2)-(C5) hold. Then the system 

(1.4.1) admits a unique uniformly exponentially stable unpredictable solution. 

Proof. One can easily see, proceeding in the way of the last theorem, that there 

exists a unique solution 𝜔(𝑡) ∈ 𝑈 for system (1.4.1). The solution is uniformly 

asymptotically stable. What is left is to show that the unpredictability property is 

valid. 

One can find a positive number 𝜅 and natural numbers 𝑙, 𝑘 and 𝑗 =  1, . . . , 𝑝, 

such that: 

 

𝜅 < 𝜎        (1.4.10) 
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|𝑓𝑗(𝑡𝑛 + 𝑢𝑛 + 𝑠, 𝑥) − 𝑓𝑗(𝑢𝑛 + 𝑠, 𝑥)| ≥ 𝜀0/2, ||𝑥|| < 𝐻, |𝑠| < 𝜅, 𝑛 ∈ ℕ, (1.4.11) 

           

𝜅 (1/4 −  (
1

𝑙
+

2

𝑘
)(𝐿 + ||𝐴||)) >

3

2𝑙
 ,                                   (1.4.12) 

       

||𝜔(𝑡 + 𝑠) − 𝜔(𝑡)|| < 𝜀0𝑚𝑖𝑛 (
1

𝑘
,

1

4𝑙
) , 𝑡 ∈ ℝ, |𝑠| < 𝜅 .                     (1.4.13) 

   

Let the numbers 𝜅, 𝑙, and 𝑘 as well as a number 𝑛 ∈ ℕ, be fixed. Denote ∆= 

= ||𝜔(𝑡𝑛 + 𝑢𝑛) − 𝜔(𝑢𝑛)|| and consider two alternave cases (i) ∆≥ 𝜀0/𝑙, (ii) ∆<

𝜀0/𝑙. 
(i) By (1.4.13) we have that: 

 

||𝜔(𝑡 + 𝑡𝑛) − 𝜔(𝑡)|| ≥ ||𝜔(𝑡𝑛 + 𝑢𝑛) − 𝜔(𝑢𝑛)|| − ||𝜔(𝑢𝑛) − 𝜔(𝑡)|| − 

 

−||𝜔(𝑡 + 𝑡𝑛) − 𝜔(𝑡𝑛 + 𝑢𝑛)|| ≥  
𝜀0

𝑙
−

𝜀0

4𝑙
−

𝜀0

4𝑙
=

𝜀

2𝑙
,              (1.4.14) 

 

if 𝑡 ∈ [𝑢𝑛 − 𝜅, 𝑢𝑛 + 𝜅] and 𝑛 ∈ ℕ. 

(ii) One can find that from (1.4.13) it follows that: 

 

||𝜔(𝑡 + 𝑡𝑛) − 𝜔(𝑡)|| <
𝜀0

𝑙
+

𝜀0

𝑘
+

𝜀0

𝑘
= 𝜀0(

1

𝑙
+

2

𝑘
)                 (1.4.15) 

 

if  𝑡 ∈ [𝑢𝑛, 𝑢𝑛 + 𝜅]. 
It is true that 

 

𝜔(𝑡 + 𝑡𝑛) − 𝜔(𝑡) = 𝜔(𝑡𝑛 + 𝑢𝑛) − 𝜔(𝑢𝑛) + ∫ 𝐴[𝜔(𝑠 + 𝑡𝑛) −
𝑡

𝑢𝑛

𝜔(𝑠)]𝑑𝑠 +          

 

+ ∫ [𝑓(𝑠 + 𝑡𝑛, 𝜔(𝑠 + 𝑡𝑛)) −
𝑡

𝑢𝑛

𝑓(𝑠, 𝜔(𝑠))|𝑑𝑠, 𝑡 ∈ ℝ.                 (1.4.16) 

                                                   

We obtain from (1.4.10) -(1.4.13) and (1.4.14) that  

 

|𝜔𝑗(𝑡 + 𝑡𝑛) − 𝜔𝑗(𝑡)| ≥ ∫ |𝑓𝑗(𝑠 + 𝑡𝑛, 𝜔(𝑠 + 𝑡𝑛)) −
𝑡

𝑢𝑛

𝑓𝑗(𝑠, 𝜔(𝑠 + 𝑡𝑛))|𝑑𝑠 − 

 

− ∫ |𝑓𝑗(𝑠, 𝜔(𝑠 + 𝑡𝑛)) −
𝑡

𝑢𝑛

𝑓𝑗(𝑠, 𝜔(𝑠))|𝑑𝑠 − ∫ | ∑ 𝑎𝑗𝑖[𝜔𝑗(𝑠 + 𝑡𝑛) − 𝜔𝑗(𝑠)]|𝑑𝑠 –

𝑝

𝑗=1

𝑡

𝑢𝑛
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−|𝜔𝑗(𝑡𝑛 + 𝑢𝑛) − 𝜔𝑗(𝑢𝑛)| ≥
𝜅

2
𝜀0 − 𝜅𝐿𝜀0(

1

𝑙
+

2

𝑘
) − 𝜅||𝐴||𝜀0(

1

𝑙
+

2

𝑘
) −

𝜀0

𝑙
≥

𝜀0

2𝑙
) 

 

for 𝑡 ∈ [𝑢𝑛 + 𝜅/2, 𝑢𝑛 + 𝜅]. 
Thus, the solution 𝜔(𝑡) is unpredictable. The theorem is proved. 

Example 5. Consider the function 𝑔(𝑡, 𝑥) = (𝑎𝑟𝑐𝑡𝑎𝑛(𝑥) + 2)Θ(𝑡) of two 

vatiables 𝑡 and 𝑥, where Θ(𝑡) = ∫ 𝑒−2(𝑡−𝑠)Ω(𝑠)𝑑𝑠,
𝑡

−∞
 is the unpredictable function. It 

is easy to see that function 𝑔(𝑡, 𝑥) is continuously differentiable, and bounded such 

that sup
ℝ×𝐺

|𝑔(𝑡, 𝑥)| =
𝜋

4
+ 1. Moreover, sup

ℝ×𝐺
|

𝜕𝑔(𝑡,𝑥)

𝜕𝑥
| =

1

2
. 

Let us fix arbitrary compact interval 𝐼 ⊂ ℝ and a positive number 𝜀. We have 

that |Θ(𝑡 + 𝑡𝑛) − Θ(𝑡)| < 𝜀 for 𝑡 ∈ 𝐼 and sufficiently large 𝑛. Consequently, 

 

|𝑔(𝑡 + 𝑡𝑛, 𝑥) − 𝑔(𝑡, 𝑥)| ≤ |𝑎𝑟𝑐𝑡𝑎𝑛(𝑥) + 2||Θ(𝑡 + 𝑡𝑛) − Θ(𝑡)| < (
𝜋

2
+ 2)𝜀. 

 

That is 𝑔(𝑡 + 𝑡𝑛, 𝑥) → 𝑔(𝑡, 𝑥) as 𝑛 → ∞ uniformly for (𝑡, 𝑥) ∈ 𝐼 × 𝐺. 
 On the other hand, it is true that |Θ(𝑡 + 𝑡𝑛) − Θ(𝑡)| ≥ 𝜀0̅ for all 

𝑡 ∈ [𝑢𝑛 − 𝜅, 𝑢𝑛 + 𝜅] and 𝑛 ∈ ℕ. This is why, we obtain that 

 

|𝑔(𝑡 + 𝑡𝑛, 𝑥) − 𝑔(𝑡, 𝑥)| = |𝑎𝑟𝑐𝑡𝑎𝑛(𝑥) + 2||Θ(𝑡 + 𝜁𝑛) − Θ(𝑡)| ≥ (−
𝜋

2
+ 2)𝜀0̅, 

 

for (𝑡, 𝑥) ∈ [𝑢𝑛 − 𝜅, 𝑢𝑛 + 𝜅] × 𝐺, 𝑛 ∈ ℕ. Thus, 𝑔(𝑡, 𝑥) is an unpredictable (strongly) 

in 𝑡 function. 

Example 6. Let us consider the system of differential equations 

 

{

𝑥1
′ = −3𝑥1 − 𝑥2 − 𝑥3 + 0.51𝑔(𝑡, 𝑥3)

𝑥2
′ = −𝑥1 − 3𝑥2 − 𝑥3 + 0.62𝑔(𝑡, 𝑥1)

𝑥3
′ = 𝑥1 + 𝑥2 − 𝑥3 + 0.51𝑔(𝑡, 𝑥2),

                              (1.4.17)  

 

where 𝑔(𝑡, 𝑥) is the function from Example 5. The eigenvalues of the matrix of 

coefficients are equal to −2, −2 and −3. One can find that conditions (𝐶2) − (𝐶4) are 

valid for system (1.4.17) with 𝛾 = −2, 𝐾 = 6 and L=0.31. According to Theorem 

1.4.1, there exists the unique asymptotically stable unpredictable solution of system 

(1.4.17). Figures 9, 10 show the simulation results for function 𝜓(𝑡), which 

exponentially converges to the solution of system (1.4.17), with initial data 

𝜓1(0) = 0.05, 𝜓2(0) = −0.1, 𝜓3(0) = 0.15. They confirm the irregularity of the 

dynamics. 
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Figure 9 – The coordinates of the function 𝜓(𝑡) 

 

 

 
 

Figure 10 – The trajectory of the function 𝜓(𝑡) 
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2 UNPREDICTABLE OSCILLATIONS IN NEURAL NETWORKS 

 

2.1 SICNNs with unpredictable oscillations 

SICNNs, which have been introduced by Bouzerdoum and Pinter [85, р. 215], 

plays an exceptional role in psychophysics, robotics, adaptive pattern recognition, 

vision and image processing. Therefore, they have been the subject of intense 

analysis be numerous authors in recent decades [89-94]. 

In its original formulation [85, р. 215], the SICNNs model is a two-

dimensional grid of processing cells. Let 𝐶𝑖𝑗 denote the cell at the (𝑖, 𝑗) position of 

the lattice. Denote by 𝑁𝑟(𝑖𝑗) the 𝑟 – neighborhood 𝐶𝑖𝑗, such that 

 

𝑁𝑟(𝑖𝑗) = {𝐶𝑘𝑝: max(|𝑘 − 𝑖|, |𝑝 − 𝑗|) ≤ 𝑟, 1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑝 ≤ 𝑛}, 

 

where m and n are fixed natural numbers. In SICNNs, neighboring cells exert mutual 

inhibitory interactions of the shunting type. The dynamics of the cell 𝐶𝑖𝑗 is described 

by the following nonlinear ordinary differential equation, 

                  
𝑑𝑥𝑖𝑗

𝑑𝑡
= −𝑎𝑖𝑗𝑥𝑖𝑗 − ∑ 𝐶𝑖𝑗

𝑘𝑝
𝑓(𝑥𝑘𝑝(𝑡))𝑥𝑖𝑗(𝑡) + 𝑣𝑖𝑗(𝑡),

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

                       (2.1.1) 

                

where 𝑥𝑖𝑗 is activity of the cell 𝐶𝑖𝑗 , the constant 𝑎𝑖𝑗 represents the passive decay rate 

of the cell activity, 𝐶𝑖𝑗
𝑘𝑝

≥ 0 is the connection or coupling strength of postsynaptic 

activity of the cell 𝐶𝑘𝑝 transmitted to the cell 𝐶𝑖𝑗 and the activation 𝑓(𝑥𝑘𝑝) is a 

positive continuous function representing the output or firing rate of the cell 𝐶𝑘𝑝, 

𝑣𝑖𝑗(𝑡) is the external input to the cell 𝐶𝑖𝑗. 

Let us denote by 𝒜 the set of functions 𝑢(𝑡) = (𝑢11, … , 𝑢1𝑛, … , 𝑢𝑚1 … , 𝑢𝑚𝑛), 
 𝑡, 𝑢𝑖𝑗 ∈ ℝ, 𝑖 = 1,2, . . . , 𝑚, 𝑗 = 1,2, . . . , 𝑛, where 𝑚, 𝑛 ∈ ℕ, such that: 

(𝒜1) functions 𝑢(𝑡) are uniformly continuous and there exists a positive number 𝐻 

such that ||𝑢||1 < 𝐻 for all 𝑢(𝑡) ∈ 𝒜; 
(𝒜2) there exists a sequence 𝑡𝑝, 𝑡𝑝 → ∞ as 𝑝 → ∞ such that for each 𝑢(𝑡) ∈ 𝒜 the 

sequence 𝑢(𝑡 + 𝑡𝑝) uniformly converges to 𝑢(𝑡) on each closed and bounded interval 

of the real axis. 

The following assumptions will be needed (𝐶1) the function 𝑣(𝑡) = 

= (𝑣11, . . . , 𝑣1𝑛, . . . , 𝑣𝑚1. . . , 𝑣𝑚𝑛), 𝑡, 𝑣𝑖𝑗 ∈ ℝ, 𝑖 = 1,2, . . . , 𝑚, 𝑗 = 1,2, . . . , 𝑛, in system 

(2.1.1) belongs to 𝒜 and is unpredictable such that there exist positive numbers 

𝛿, 𝜀0 > 0 and a sequence 𝑡𝑝 → ∞ as 𝑝 → ∞, which satisfy ||𝑣(𝑡 + 𝑡𝑝) − 𝑣(𝑡)|| ≥ 𝜀0 

for all 𝑡 ∈ [𝑠𝑝 − 𝛿, 𝑠𝑝 + 𝛿], and 𝑝 ∈ ℕ. 

(𝐶2) for the rates we assume that 𝛾 = 𝑚𝑖𝑛
(𝑖,𝐽)

𝑎𝑖𝑗 > 0 and �̅� = 𝑚𝑎𝑥
(𝑖,𝑗)

𝑎𝑖𝑗; 

(𝐶3) there exist positive numbers 𝑚𝑖𝑗 and 𝑚𝑓 such that 𝑠𝑢𝑝
𝑡∈ℝ

|𝑣𝑖𝑗| ≤ 𝑚𝑖𝑗 for all 

 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛, and 𝑠𝑢𝑝
|𝑠|<𝐻

|𝑓(𝑠)| ≤ 𝑚𝑓; 
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(𝐶4) there exists Lipschitz constant 𝐿 such that |𝑓(𝑠1) − 𝑓(𝑠2)| ≤ 𝐿|𝑠1 − 𝑠2| for all 

𝑠1, 𝑠2, |𝑠1| < 𝐻,| 𝑠2|<H; 

 

(𝐶5) (𝐿𝐻 + 𝑚𝑓) 𝑚𝑎𝑥
(𝑖,𝑗)

∑ 𝐶𝑖𝑗
𝑘𝑝

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗) < 𝛾 for all 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛. 

 

Likewise, to the result in [88, р. 10], one can verify that the following assertion 

is valid. 

Lemma 2.1.1. A bounded on ℝ function 𝑦(𝑡) = {𝑦𝑖𝑗 (𝑡)}, 𝑖 = 1, … , 𝑚, 𝑗 =

1, … , 𝑛, is a solution of SICNNs (2.1.1) if and only if the following integral equation 

is satisfied: 

 

𝑦𝑖𝑗(𝑡) = − ∫ 𝑒−𝑎𝑖𝑗(𝑡−𝑠) [ ∑ 𝐶𝑖𝑗
𝑘𝑝

𝑓(𝑦𝑘𝑝(𝑠))𝑦𝑖𝑗(𝑠) − 𝑣𝑖𝑗(𝑠)

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

] 𝑑𝑠
𝑡

−∞

       (2.1.2) 

                    

for all 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛. 
 Define on 𝒜 the operator Π such that Π𝑢(𝑡) = Π𝑖𝑗𝑢(𝑡), 𝑖 = 1, … , 𝑚, 

 𝑗 = 1, … , 𝑛, where: 

Π𝑖𝑗𝑢(𝑡) = − ∫ 𝑒−𝑎𝑖𝑗(𝑡−𝑠) [ ∑ 𝐶𝑖𝑗
𝑘𝑝

𝑓(𝑢𝑘𝑝(𝑠))𝑢𝑖𝑗(𝑠) − 𝑣𝑖𝑗(𝑠)

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

] 𝑑𝑠
𝑡

−∞

.    (2.1.3) 

 

Lemma 2.1.2. If 𝑢(𝑡) ∈ 𝒜 then Π𝑢(𝑡) ∈ 𝒜. 
Proof. Fix a function 𝑢(𝑡) ∈ 𝒜, is not difficult to show that Π𝑢(𝑡) satisfies the 

condition (𝒜1). 

 Now, let us fix a positive number 𝜀 and a finite interval [𝑎, 𝑏] ⊂ ℝ. Consider 

numbers 𝑐 < 𝑎 and 𝜉 > 0, which satisfy the following inequalities, 

 

2

𝛾
(max

(𝑖,𝑗)
∑ 𝐶𝑖𝑗

𝑘𝑝

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

(𝑚𝑓𝐻 + 𝐿𝐻2) + 1) 𝑒−𝛾(𝑎−𝑐) <
𝜀

2
,           (2.1.4) 

 

and 
 

𝜉

𝛾
(max

(𝑖,𝑗)
∑ 𝐶𝑖𝑗

𝑘𝑝

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

(𝑚𝑓 + 𝐿𝐻) + 1) <
𝜀

2
.                  (2.1.5) 

 

 We will show that ||Π𝑢(𝑡 + 𝑡𝑝) − Π𝑢(𝑡)|| < ε on [𝑎, 𝑏] for sufficiently large 

𝑝. Let p be sufficiently large number such that ||𝑢(𝑡 + 𝑡𝑝) − 𝑢(𝑡)|| < 𝜉 and 

||𝑣(𝑡 + 𝑡𝑝) − 𝑣(𝑡)|| < 𝜉 on [𝑐, 𝑏]. Then for all 𝑡 ∈ [𝑎, 𝑏] it is true that: 
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|Π𝑖𝑗𝑢(𝑡 + 𝑡𝑝) − Π𝑖𝑗𝑢(𝑡)| ≤ 

 

≤ ∫ 𝑒−𝛾(𝑡−𝑠)
𝑐

−∞

( ∑ 𝐶𝑖𝑗
𝑘𝑝

|𝑓(𝑢𝑘𝑝(𝑠))[𝑢𝑖𝑗(𝑠) − 𝑢𝑖𝑗(𝑠 + 𝑡𝑝)]

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

+ 

 

+ [𝑓 (𝑢𝑘𝑝(𝑠)) − 𝑓 (𝑢𝑘𝑝(𝑠 + 𝑡𝑝))] 𝑢𝑖𝑗(𝑠 + 𝑡𝑝)|+|𝑣𝑖𝑗(𝑠 + 𝑡𝑝) − 𝑣𝑖𝑗(𝑠)|)𝑑𝑠 + 

 

                       + ∫ 𝑒−𝛾(𝑡−𝑠)
𝑡

𝑐

( ∑ 𝐶𝑖𝑗
𝑘𝑝

|𝑓(𝑢𝑘𝑝(𝑠))[𝑢𝑖𝑗(𝑠) − 𝑢𝑖𝑗(𝑠 + 𝑡𝑝)] +

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

 

 

+[𝑓(𝑢𝑘𝑝(𝑠)) − 𝑓(𝑢𝑘𝑝(𝑠 + 𝑡𝑝))]𝑢𝑖𝑗(𝑠 + 𝑡𝑝)| + |𝑣𝑖𝑗(𝑠 + 𝑡𝑝) − 𝑣𝑖𝑗(𝑠)|)𝑑𝑠| + 

 

≤
1

𝛾
(max

(𝑖,𝑗)
∑ 𝐶𝑖𝑗

𝑘𝑝

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

(2𝑚𝑓𝐻 + 2𝐿𝐻2) + 2𝐻) 𝑒−𝛾(𝑎−𝑐) + 

+
𝜉

𝛾
(max

(𝑖,𝑗)
∑ 𝐶𝑖𝑗

𝑘𝑝

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

(𝑚𝑓 + 𝐿𝐻) + 1) , 

 

for all 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛. Now inequalities (2.1.4) and (2.1.5) imply that 

||Π𝑢(𝑡 + 𝑡𝑝) − Π𝑢(𝑡)|| < ε for  𝑡 ∈ [𝑎, 𝑏]. Since ε is arbitrary small number, the 

condition (𝒜2) is valid. The lemma is proved. 

Lemma 2.1.3. The operator Π is contractive in 𝒜. 

Proof. For two functions 𝜑, 𝜓 ∈ 𝒜, and fixed 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛 we have 

that 

 

|Π𝑖𝑗𝜑(𝑡) − Π𝑖𝑗𝜓(𝑡)| ≤ 

 

≤ ∫ 𝑒−𝛾(𝑡−𝑠)
𝑡

−∞

∑ 𝐶𝑖𝑗
𝑘𝑝

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

|𝑓 (𝜑𝑘𝑝(𝑠)) 𝜑𝑖𝑗(𝑠) − 𝑓 (𝜑𝑘𝑝(𝑠)) 𝜓𝑖𝑗(𝑠)| 𝑑𝑠 + 

 

+ ∫ 𝑒−𝛾(𝑡−𝑠)
𝑡

−∞

∑ 𝐶𝑖𝑗
𝑘𝑝

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

|𝑓(𝜑𝑘𝑝(𝑠))𝜓𝑖𝑗(𝑠) − 𝑓(𝜓𝑘𝑝(𝑠))𝜓𝑖𝑗(𝑠)|𝑑𝑠 ≤ 

 

≤
(𝐿𝐻 + 𝑚𝑓)

𝛾
max
(𝑖,𝑗)

∑ 𝐶𝑖𝑗
𝑘𝑝

||𝜑 − 𝜓||1.

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)
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This is why ||Π𝜑 − Π𝜓||1 ≤
(𝐿𝐻+𝑚𝑓)

𝛾
max
(𝑖,𝑗)

∑ 𝐶𝑖𝑗
𝑘𝑝

||𝜑 − 𝜓||1.𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)  Then 

condition (𝐶5) implies that the operator Π is contractive in the set 𝒜. The lemma is 

proved. 

Theorem 2.1.1. Suppose that conditions (C1) − (C5) are valid, then the system 

(2.1.1) possesses a unique asymptotically stable unpredictable solution. 

Proof. Let us show that the space 𝒜 is complete. Consider a Cauchy sequence 

𝜙𝑘(𝑡) in 𝒜, which converges to a limit function 𝜙(𝑡) on ℝ. It suffices to show that 

𝜙(𝑡) satisfies condition (𝒜2), since condition (𝒜1) can be easily checked. Fix a 

closed and bounded interval 𝐼 ⊂ ℝ. We have that 

 

||𝜙(𝑡 + 𝑡𝑝) − 𝜙(𝑡)|| ≤ ||𝜙(𝑡 + 𝑡𝑝) − 𝜙𝑘(𝑡 + 𝑡𝑝)|| + ||𝜙𝑘(𝑡 + 𝑡𝑝) − 𝜙𝑘(𝑡)|| + 

 

+||𝜙𝑘(𝑡) − 𝜙(𝑡)||.                                                       (2.1.6) 

 

Now, one can take sufficiently large 𝑝 and 𝑘 such that each term on the right 

hand-side of (2.1.6) is smaller than 
𝜀

3
 for an arbitrary positive 𝜀 and 𝑡 ∈ 𝐼. The 

inequality implies that ||𝜙(𝑡 + 𝑡𝑝) − 𝜙(𝑡)|| ≤ 𝜀 on I. That is the sequence 𝜙(𝑡 + 𝑡𝑝) 

uniformly converges to 𝜙(𝑡) on I. The completeness of 𝒜 is proved. Now, by the 

contractive mapping theorem, duo to Lemmas 2.1.1 and 2.1.2, there exists a unique 

solution 𝜔(𝑡) ∈ 𝒜 of the equation (2.1.1). 

One can find a positive number 𝜅 and natural numbers 𝑙 and 𝑘 such that the 

following inequalities are valid: 

 

𝜅 < 𝛿;         (2.1.7) 

    

𝜅 (
1

2
− (

1

𝑙
+

2

𝑘
)(�̅� + ∑ 𝐶𝑖𝑗

𝑘𝑝

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

(𝑚𝑓 + 𝐿𝐻))) ≥
3

2𝑙
;                   (2.1.8) 

             

|𝜔𝑖𝑗(𝑡 + 𝑠) − 𝜔𝑖𝑗(𝑡)| < 𝜀0𝑚𝑖𝑛(
1

𝑘
,

1

4𝑙
), 𝑡 ∈ ℝ, |𝑠| < 𝜅,                    (2.1.9) 

 

for all 𝑖 =  1,2, . . . , 𝑚, 𝑗 =  1,2, . . . , 𝑛. 

Denote ∆= |𝜔𝑖𝑗(𝑡𝑝 + 𝑠𝑝) − 𝜔𝑖𝑗(𝑠𝑝)| and consider two cases: (i) ∆< 𝜀0/𝑙;  

(ii)  ∆≥ 𝜀0/𝑙  such that the remaining proof falls into two parts. 

(i) From (2.1.9) it follows that: 

 

|𝜔𝑖𝑗(𝑡 + 𝑠) − 𝜔𝑖𝑗(𝑡)| <
𝜀0

𝑙
+

𝜀0

𝑘
+

𝜀0

𝑘
= 𝜀0(

1

𝑙
+

2

𝑘
),                 (2.1.10) 

 

if 𝑡 ∈ [𝑠𝑝, 𝑠𝑝 + 𝜅]. It is true that:  
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𝜔𝑖𝑗(𝑡 + 𝑡𝑝) − 𝜔𝑖𝑗(𝑡) = 𝜔(𝑡𝑝 + 𝑠𝑝) − 𝜔(𝑠𝑝) − 

 

− ∫ 𝑎𝑖𝑗 (𝜔(𝑠 + 𝑡𝑝) − 𝜔(𝑠)) 𝑑𝑠
𝑡

𝑠𝑝

− ∫ (𝑣𝑖𝑗(𝑠 + 𝑡𝑝) − 𝑣𝑖𝑗(𝑠))𝑑𝑠
𝑡

𝑠𝑝

− 

 

− ∫ ∑ 𝐶𝑖𝑗
𝑘𝑝

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

(𝑓
𝑡

𝑠𝑝

(𝜔𝑘𝑝(𝑠 + 𝑡𝑝))𝜔𝑖𝑗(𝑠 + 𝑡𝑝) − 𝑓(𝜔𝑘𝑝(𝑠))𝜔𝑖𝑗(𝑠))𝑑𝑠.   (2.1.11) 

 

We obtain from (2.1.7), (2.1.8) and (2.1.10) - (2.1.11) that: 

 

|𝜔𝑖𝑗(𝑡 + 𝑠) − 𝜔𝑖𝑗(𝑡)| ≥ ∫ |𝑣𝑖𝑗(𝑠 + 𝑡𝑝) − 𝑣𝑖𝑗(𝑠)|𝑑𝑠
𝑡

𝑠𝑝

− |𝜔(𝑡𝑝 + 𝑠𝑝) − 𝜔(𝑠𝑝)| − 

− ∫ 𝑎𝑖𝑗|𝜔(𝑠 + 𝑡𝑝) − 𝜔(𝑠)|𝑑𝑠 − ∫ ∑ 𝐶𝑖𝑗
𝑘𝑝

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

|𝑓
𝑡

𝑠𝑝

(
𝑡

𝑠𝑝

𝜔𝑘𝑝(𝑠 + 𝑡𝑝))𝜔𝑖𝑗(𝑠 + 𝑡𝑝) − 

 

−𝑓 (𝜔𝑘𝑝(𝑠)) 𝜔𝑖𝑗(𝑠)|𝑑𝑠 ≥ 𝜀0

𝜅

2
−

𝜀0

𝑙
− 𝜀0𝜅 (

1

𝑙
+

2

𝑘
) (�̅� + ∑ 𝐶𝑖𝑗

𝑘𝑝

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

(𝑚𝑓 + 𝐿𝐻)) 

 

=  𝜀0𝜅 (
1

2
− (

1

𝑙
+

2

𝑘
)(�̅� + ∑ 𝐶𝑖𝑗

𝑘𝑝

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

(𝑚𝑓 + 𝐿𝐻))) ≥
3𝜀0

2𝑙
, 

for 𝑡 ∈ [𝑠𝑝 +
𝜅

2
, 𝑠𝑝 + 𝜅]. 

(ii) For the case ∆≥ 𝜀0/𝑙, it can easily find that (2.1.9) implies: 

 

||𝜔(𝑡 + 𝑡𝑝) − 𝜔(𝑡)|| ≥ ||𝜔(𝑡𝑝 + 𝑠𝑝) − 𝜔(𝑠𝑝)|| − ||𝜔(𝑠𝑝) − 𝜔(𝑡)|| − 

 

−||𝜔(𝑡 + 𝑡𝑝) − 𝜔(𝑡𝑝 + 𝑠𝑝)||  ≥  
𝜀0

𝑙
 −

𝜀0

4𝑙
−

𝜀0

4𝑙
=

𝜀0

2𝑙
, 

 

if 𝑡 ∈ [𝑠𝑝 − 𝜅, 𝑠𝑝 + 𝜅] and 𝑝 ∈ ℕ. 

Thus, one can conclude that 𝜔(𝑡) is unpredictable. 

Finally, we will discuss the stability of the unpredictable solution 𝜔(𝑡). It is 

true that: 

 

𝜔𝑖𝑗(𝑡) = 𝑒−𝑎𝑖𝑗(𝑡−𝑡0)𝜔𝑖𝑗(𝑡0) − 

 

               − ∫ 𝑒−𝑎𝑖𝑗(𝑡−𝑠) [ ∑ 𝐶𝑖𝑗
𝑘𝑝

𝑓(𝜔𝑘𝑝(𝑠))𝜔𝑖𝑗(𝑠) − 𝑣𝑖𝑗(𝑠)

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

] 𝑑𝑠
𝑡

𝑡0

, 
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for all 𝑖 =  1,2, . . . , 𝑚, 𝑗 =  1,2, . . . , 𝑛. 
Let 𝑧(𝑡) = (𝑧11(𝑡), 𝑧12(𝑡), . . . , 𝑧𝑚𝑛(𝑡)) be another solution of system (2.1.1). 

One can write: 

 

𝑧𝑖𝑗(𝑡) = 𝑒−𝑎𝑖𝑗(𝑡−𝑡0)𝑧𝑖𝑗(𝑡0) − 

             − ∫ 𝑒−𝑎𝑖𝑗(𝑡−𝑠) [ ∑ 𝐶𝑖𝑗
𝑘𝑝

𝑓(𝑧𝑘𝑝(𝑠))𝑧𝑖𝑗(𝑠) − 𝑣𝑖𝑗(𝑠)

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

] 𝑑𝑠
𝑡

𝑡0

, 

 

for all 𝑖 =  1,2, . . . , 𝑚, 𝑗 =  1,2, . . . , 𝑛. Making use of the relation: 

 

𝑧𝑖𝑗(𝑡) − 𝜔𝑖𝑗(𝑡) = 𝑒−𝑎𝑖𝑗(𝑡−𝑡0)(𝑧𝑖𝑗(𝑡0) − 𝜔𝑖𝑗(𝑡0)) − 

 

− ∫ 𝑒−𝑎𝑖𝑗(𝑡−𝑠) [ ∑ 𝐶𝑖𝑗
𝑘𝑝

𝑓(𝜔𝑘𝑝(𝑠))𝜔𝑖𝑗(𝑠) ∑ 𝐶𝑖𝑗
𝑘𝑝

𝑓(𝑧𝑘𝑝(𝑠))𝑧𝑖𝑗(𝑠)

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

] 𝑑𝑠
𝑡

𝑡0

, 

 

we obtain that: 

 

|𝑧𝑖𝑗(𝑡) − 𝜔𝑖𝑗(𝑡)| ≤ 𝑒−𝛾(𝑡−𝑡0)|𝑧𝑖𝑗(𝑡0) − 𝜔𝑖𝑗(𝑡0)| + 

 

+𝑚𝑓 ∫ 𝑒−𝛾(𝑡−𝑠)
𝑡

𝑡0

∑ 𝐶𝑖𝑗
𝑘𝑝

|𝑧𝑖𝑗(𝑠) − 𝜔𝑖𝑗(𝑠)|𝑑𝑠

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

+ 

 

 +𝐿𝐻 ∫ 𝑒−𝛾(𝑡−𝑠)
𝑡

𝑡0

∑ 𝐶𝑖𝑗
𝑘𝑝

|𝑧𝑘𝑝(𝑠) − 𝜔𝑖𝑗(𝑠)|𝑑𝑠

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

≤ 

 

≤ 𝑒−𝛾(𝑡−𝑡0)||𝑧𝑖𝑗(𝑡0) − 𝜔𝑖𝑗(𝑡0)|| + 

 

                                +𝑚𝑓 ∫ 𝑒−𝛾(𝑡−𝑠)
𝑡

𝑡0

∑ 𝐶𝑖𝑗
𝑘𝑝

||𝑧𝑖𝑗(𝑠) − 𝜔𝑖𝑗(𝑠)|| 𝑑𝑠

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

+ 

 

                                +𝐿𝐻 ∫ 𝑒−𝛾(𝑡−𝑠)
𝑡

𝑡0

∑ 𝐶𝑖𝑗
𝑘𝑝

||𝑧𝑘𝑝(𝑠) − 𝜔𝑖𝑗(𝑠)||𝑑𝑠

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

, 

 

for all 𝑖 =  1,2, . . . , 𝑚, 𝑗 =  1,2, . . . , 𝑛. 

Thus, one can be confirmed that: 
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||𝑧(𝑡) − 𝜔(𝑡)|| ≤  𝑒−𝛾(𝑡−𝑡0)||𝑧(𝑡0) − 𝜔(𝑡0)|| + 𝐷 ∫ 𝑒−𝛾(𝑡−𝑠)||𝑧(𝑠) − 𝜔(𝑠)||𝑑𝑠
𝑡

𝑡0

, 

 

where 𝐷 = (𝐿𝐻 + 𝑚𝑓) max
(𝑖,𝑗)

∑ 𝐶𝑖𝑗
𝑘𝑝

𝐶𝑘𝑝∈𝑁𝑟(𝑖,𝑗) . Multiplying both sides of the last 

inequality by 𝑒𝛾𝑡 we obtain that: 

 

𝑒𝛾𝑡||𝑧(𝑡) − 𝜔(𝑡)|| ≤ 𝑒𝛾𝑡0||𝑧(𝑡0) − 𝜔(𝑡0)|| + 𝐷 ∫ 𝑒𝛾𝑠||𝑧(𝑠) − 𝜔(𝑠)||𝑑𝑠
𝑡

𝑡0

. 

 

Now, applying Gronwall-Belman Lemma, one can attain that: 

 

||𝑧(𝑡) − 𝜔(𝑡)|| ≤ ||𝑧(𝑡0) − 𝜔(𝑡0)||𝑒(𝐷−𝛾)(𝑡−𝑡0). 
 

The last inequality and condition (𝐶5) confirm that the unpredictable solution 

𝜔(𝑡) is uniformly asymptotically stable. The theorem is proved. 

Example 7. Let us introduce the following SICNNs: 

 
𝑑𝑥𝑖𝑗

𝑑𝑡
= −𝑎𝑖𝑗𝑥𝑖𝑗 − ∑ 𝐶𝑖𝑗

𝑘𝑝
𝑓(𝑥𝑘𝑝(𝑡))𝑥𝑖𝑗(𝑡) + 𝑣𝑖𝑗(𝑡),

𝐶𝑘𝑝∈𝑁1(𝑖,𝑗)

            (2.1.12) 

                

where = 1,2,3, 𝑎11 = 4, 𝑎12 = 2, 𝑎13 = 7, 𝑎21 = 5, 𝑎22 = 9, 𝑎23 = 6, 𝐶11 = 0.03,
𝐶12 = 0.05, 𝐶13 = 0.01, 𝐶21 = 0.06, 𝐶22 = 0.04, 𝐶23 = 0.05. The functions are 

defined as 𝑓(𝑠) = 0.25𝑎𝑟𝑐𝑡𝑔(𝑠), 𝑣11(𝑡) = 4Θ3(𝑡) + 5,  𝑣12(𝑡) = −5Θ(𝑡) + 1, 
𝑣13(𝑡) = 2Θ3(𝑡), 𝑣21(𝑡) = 6Θ(𝑡) − 1, 𝑣22(𝑡) = 3Θ(𝑡) + 2, 𝑣23(𝑡) = −Θ(𝑡) + 3, 

where Θ(𝑡) = ∫ 𝑒−2.5(𝑡−𝑠)Ω(𝑠)𝑑𝑠
𝑡

−∞
 is the unpredictable function. Moreover, 

according to the Definition 1.1.1 and properties of unpredictable functions, the 

function 𝑣(𝑡) is unpredictable. We have that |𝑣𝑖𝑗(𝑡)| ≤ 𝑚𝑖𝑗 , where 𝑚11 = 1.26; 

𝑚12 = 3; 𝑚13 = 0.13; 𝑚21 = 3.4; 𝑚22 = 3.2; 𝑚23 = 3.4. One can calculate that 

∑ 𝐶11
𝑘𝑝

= 0.18𝐶𝑘𝑝∈𝑁1(1,1) , ∑ 𝐶12
𝑘𝑝

= 0.24𝐶𝑘𝑝∈𝑁1(1,2) , ∑ 𝐶13
𝑘𝑝

= 0.15𝐶𝑘𝑝∈𝑁1(1,3) , 

∑ 𝐶21
𝑘𝑝

= 0.18𝐶𝑘𝑝∈𝑁1(2,1) , ∑ 𝐶22
𝑘𝑝

= 0.24𝐶𝑘𝑝∈𝑁1(2,2) , ∑ 𝐶23
𝑘𝑝

= 0.15𝐶𝑘𝑝∈𝑁1(2,3) . The 

conditions (𝐶1) − (𝐶5) hold for the network (2.1.12) with 𝛾 = 2, �̅� = 9, 𝐿 = 0.25,  
 𝑚𝑓 = 0.3925, and 𝐻 = 1.5. 

Figure 11 shows the coordinates of the function 𝜔(𝑡) with initial values 

𝜔11(0) = 1.21, 𝜔12(0) = 0, 𝜔13(0) = 0.02, 𝜔21(0) = 0.25, 𝜔22(0) = 0.23, 

𝜔23(0) = 0.41. The function 𝜔(𝑡) exponentially tends to the unpredictable solution 

𝑥(𝑡) of the equation (2.1.12), as time increases.  
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Figure 11 – The coordinates of the function 𝜔(𝑡), which exponentially tends to the 

unpredictable solution 𝑥(𝑡) of the equation (2.1.12), as time increases 

 

2.2 Strongly unpredictable oscillations of SICNNs  

Despite the fact that the concepts of unpredictable and strongly unpredictable 

solutions are close, and the proof from existence and uniqueness is largely similar, we 

believe that it is logical to reproduce the complete proof of a strongly unpredictable 

solution in our research. In addition, the dynamics of each coordinate is very 

important in neural networks and this entails additional conditions. 

 Next, we consider following SICNNs: 

 

                  
𝑑𝑥𝑖𝑗

𝑑𝑡
= −𝑏𝑖𝑗𝑥𝑖𝑗 − ∑ 𝐷𝑖𝑗

𝑘𝑝
𝑓(𝑥𝑘𝑝(𝑡))𝑥𝑖𝑗(𝑡) + 𝑔𝑖𝑗(𝑡),

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

              (2.2.1) 

 

with strongly unpredictable perturbations.  

Let us denote by ℬ the set of functions 𝑢(𝑡) = (𝑢11, … , 𝑢1𝑛, … , 𝑢𝑚1 … , 𝑢𝑚𝑛), 𝑡, 
𝑢𝑖𝑗 ∈ ℝ, 𝑖 = 1,2, . . . , 𝑚, 𝑗 = 1,2, . . . , 𝑛, where 𝑚, 𝑛 ∈ ℕ, such that: 

(ℬ1) functions 𝑢(𝑡) are uniformly continuous; 

(ℬ2) there exists a positive number 𝐻 such that ||𝑢||1 < 𝐻 for all 𝑢(𝑡) ∈ ℬ; 
(ℬ3) there exists a sequence 𝑡𝑝, 𝑡𝑝 → ∞ as 𝑝 → ∞ such that for each 𝑢(𝑡) ∈ ℬ 

the sequence 𝑢(𝑡 + 𝑡𝑝) uniformly converges to 𝑢(𝑡) on each closed and bounded 

interval of the real axis. 

The following conditions will be needed: 
(𝐷1) the function 𝑔(𝑡) = (𝑔11, … , 𝑔1𝑛, … , 𝑔𝑚1 … , 𝑔𝑚𝑛), 𝑡, 𝑔𝑖𝑗 ∈ ℝ, 𝑖 =

1,2, … , 𝑚, 𝑗 = 1,2, … , 𝑛, in system (2.2.1) belongs to ℬ and is strongly unpredictable 

such that there exist positive numbers 𝛿, 𝜀0 > 0 and a sequence 𝑡𝑝 → ∞ as 𝑝 → ∞, 

which satisfy |𝑔𝑖𝑗(𝑡 + 𝑡𝑝)−𝑔𝑖𝑗(𝑡)| ≥ 𝜀0 for all 𝑡 ∈ [𝑠𝑝 − 𝛿, 𝑠𝑝 + 𝛿], 𝑖 = 1, … , 𝑚, 

𝑗 = 1, . . . , 𝑛, and 𝑝 ∈ ℕ. 



49 

 

(𝐷2) 𝛾 ≤ 𝑏𝑖𝑗 ≤ �̅�, where 𝛾, �̅� are positive numbers; 

(𝐷3) |𝑔𝑖𝑗(𝑡)| ≤ 𝑚𝑖𝑗, where 𝑚𝑖𝑗 are positive numbers, for all 𝑖 = 1, … , 𝑚, 

𝑗 = 1, … , 𝑛, and 𝑡 ∈ ℝ; 

(𝐷4)  |𝑓(𝑠)| ≤ 𝑚𝑓, for |𝑠|  < 𝐻 and some constant 𝑚𝑓 > 0; 

(𝐷5) there exists a positive constant 𝐿 such that |𝑓(𝑠1) − 𝑓(𝑠2)| ≤ 𝐿|𝑠1 − 𝑠2| 
for all 𝑠1, 𝑠2, |𝑠1| < 𝐻, |𝑠2| < 𝐻; 

(𝐷6) 𝑚𝑓 ∑ 𝐷𝑖𝑗
𝑘𝑝

< 𝑏𝑖𝑗

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

, for each 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛; 

(𝐷7) 
𝑚𝑖𝑗

𝑏𝑖𝑗 − 𝑚𝑓 ∑ 𝐷𝑖𝑗
𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

< 𝐻, for all 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛; 

(𝐷8) (𝐿𝐻 + 𝑚𝑓) 𝑚𝑎𝑥
(𝑖,𝑗)

∑ 𝐷𝑖𝑗
𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

< 𝛾. 

 

Likewise, to the result in Hartman [88, р. 10], one can verify that the following 

assertion is valid. 

Lemma 2.2.1. A bounded on ℝ function 𝑦(𝑡) = {𝑦𝑖𝑗 (𝑡)}, 𝑖 = 1, … , 𝑚, 𝑗 = 

= 1, … , 𝑛, is a solution of SICNNs (2.2.1) if and only if the following integral 

equation is satisfied 

 

𝑦𝑖𝑗(𝑡) = − ∫ 𝑒−𝑏𝑖𝑗(𝑡−𝑠) [ ∑ 𝐷𝑖𝑗
𝑘𝑝

𝑓(𝑦𝑘𝑝(𝑠))𝑦𝑖𝑗(𝑠) − 𝑔𝑖𝑗(𝑠)

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

] 𝑑𝑠
𝑡

−∞

       (2.2.2) 

                    

for all 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛. 

 Define on ℬ the operator Π such that Π𝑢(𝑡) = Π𝑖𝑗𝑢(𝑡), 𝑖 = 1, … , 𝑚, 

𝑗 = 1, … , 𝑛, where 

Π𝑖𝑗𝑢(𝑡) = − ∫ 𝑒−𝑏𝑖𝑗(𝑡−𝑠) [ ∑ 𝐷𝑖𝑗
𝑘𝑝

𝑓(𝑢𝑘𝑝(𝑠))𝑢𝑖𝑗(𝑠) − 𝑔𝑖𝑗(𝑠)

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

] 𝑑𝑠
𝑡

−∞

.    (2.2.3) 

 

Lemma 2.2.2. If 𝑢(𝑡) ∈ ℬ then Π𝑢(𝑡) ∈ ℬ. 
Proof. Fix a function 𝑢(𝑡) ∈ ℬ. One can find that 

 

|Π𝑖𝑗𝑢(𝑡)| ≤ ∫ 𝑒−𝑏𝑖𝑗(𝑡−𝑠) ( ∑ 𝐷𝑖𝑗
𝑘𝑝

|𝑓(𝑢𝑘𝑝(𝑠))𝑢𝑖𝑗(𝑠)| + |𝑔𝑖𝑗(𝑠)|

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

) 𝑑𝑠
𝑡

−∞

≤ 

 

≤
1

𝑏𝑖𝑗
(𝐻𝑚𝑓 ∑ 𝐷𝑖𝑗

𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

+ 𝑚𝑖𝑗)                                 (2.2.4) 
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for all 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛. According to conditions (𝐷6), (𝐷7) we have that 

||Π𝑢(𝑡)||1 < 𝐻. 
 Uniform continuity of function Π𝑢(𝑡) follows from estimates: 

 

|
𝜕Π𝑖𝑗𝑢(𝑡)

𝜕𝑡
| = | ∑ 𝐷𝑖𝑗

𝑘𝑝
𝑓 (𝑢𝑘𝑝(𝑠)) 𝑢𝑖𝑗(𝑠) − 𝑔𝑖𝑗(𝑠)

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

− 

 

−𝑏𝑖𝑗 ∫ 𝑒−𝑏𝑖𝑗(𝑡−𝑠) [ ∑ 𝐷𝑖𝑗
𝑘𝑝

𝑓 (𝑢𝑘𝑝(𝑠)) 𝑢𝑖𝑗(𝑠) − 𝑔𝑖𝑗(𝑠)

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

] 𝑑𝑠| ≤
𝑡

−∞

 

 

≤ (𝐻𝑚𝑓 ∑ 𝐷𝑖𝑗
𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

+ 𝐻) +
�̅�

𝛾
(𝐻𝑚𝑓 ∑ 𝐷𝑖𝑗

𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

+ 𝐻) = 

 

= (1 +
�̅�

𝛾
)𝐻(𝑚𝑓 ∑ 𝐷𝑖𝑗

𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

+ 1) < ∞ 

 

for all 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛. That is the condition (ℬ1) is valid, since the 

derivatives are bounded.  

 Let us fix a positive number 𝜀 and a finite interval [𝑎, 𝑏] ⊂ ℝ. Consider 

numbers 𝑐 < 𝑎 and 𝜉 > 0, which satisfy the following inequalities, 

 

2𝐻

𝛾
(max

(𝑖,𝑗)
∑ 𝐷𝑖𝑗

𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

(𝑚𝑓 + 𝐿𝐻) + 1) 𝑒−𝛾(𝑎−𝑐) <
𝜀

2
,           (2.2.5) 

 

𝜉

𝛾
(max

(𝑖,𝑗)
∑ 𝐷𝑖𝑗

𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

(𝑚𝑓 + 𝐿𝐻) + 1) <
𝜀

2
.                  (2.2.6) 

 

We will show that ||Π𝑢(𝑡 + 𝑡𝑝) − Π𝑢(𝑡)|| < ε on [𝑎, 𝑏] for sufficiently large 

p. Let p be a large enough number such that ||𝑢(𝑡 + 𝑡𝑝) − 𝑢(𝑡)|| < 𝜉 and 

||𝑔(t + 𝑡𝑝) − 𝑔(t)|| < 𝜉 on [𝑐, 𝑏]. Then for all 𝑡 ∈ [𝑎, 𝑏] it is true that: 

 

|Π𝑖𝑗𝑢(𝑡 + 𝑡𝑝) − Π𝑖𝑗𝑢(𝑡)| ≤ 

 

≤ ∫ 𝑒−𝛾(𝑡−𝑠)
𝑐

−∞

( ∑ 𝐷𝑖𝑗
𝑘𝑝

|𝑓(𝑢𝑘𝑝(𝑠))[𝑢𝑖𝑗(𝑠) − 𝑢𝑖𝑗(𝑠 + 𝑡𝑝)]

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

+ 
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+ [𝑓 (𝑢𝑘𝑝(𝑠)) − 𝑓 (𝑢𝑘𝑝(𝑠 + 𝑡𝑝))] 𝑢𝑖𝑗(𝑠 + 𝑡𝑝)|+|𝑔𝑖𝑗(𝑠 + 𝑡𝑝) − 𝑔𝑖𝑗(𝑠)|)𝑑𝑠 + 

 

                       + ∫ 𝑒−𝛾(𝑡−𝑠)
𝑡

𝑐

( ∑ 𝐷𝑖𝑗
𝑘𝑝

|𝑓(𝑢𝑘𝑝(𝑠))[𝑢𝑖𝑗(𝑠) − 𝑢𝑖𝑗(𝑠 + 𝑡𝑝)] +

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

 

 

+[𝑓(𝑢𝑘𝑝(𝑠)) − 𝑓(𝑢𝑘𝑝(𝑠 + 𝑡𝑝))]𝑢𝑖𝑗(𝑠 + 𝑡𝑝)| + |𝑔𝑖𝑗(𝑠 + 𝑡𝑝) − 𝑔𝑖𝑗(𝑠)|)𝑑𝑠| + 

 

≤
1

𝛾
(max

(𝑖,𝑗)
∑ 𝐷𝑖𝑗

𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

(2𝑚𝑓𝐻 + 2𝐿𝐻2) + 2𝐻) 𝑒−𝛾(𝑎−𝑐) + 

 

+
𝜉

𝛾
(max

(𝑖,𝑗)
∑ 𝐷𝑖𝑗

𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

(𝑚𝑓 + 𝐿𝐻) + 1) , 

 

for all 𝑖 = 1, … , 𝑚, 𝑗 = 1, … , 𝑛. Now inequalities (2.2.5) and (2.2.6) imply that 

||Π𝑢(𝑡 + 𝑡𝑝) − Π𝑢(𝑡)|| < ε for  𝑡 ∈ [𝑎, 𝑏]. Since ε is arbitrary small number, the 

condition (ℬ3) is valid. The lemma is proved. 

Lemma 2.2.3. The operator Π is contractive in ℬ. 

Proof. For two functions 𝜑, 𝜓 ∈ ℬ, we have that: 

 

|Π𝑖𝑗𝜑(𝑡) − Π𝑖𝑗𝜓(𝑡)| ≤ 

 

≤ ∫ 𝑒−𝛾(𝑡−𝑠)
𝑡

−∞

∑ 𝐷𝑖𝑗
𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

|𝑓 (𝜑𝑘𝑝(𝑠)) 𝜑𝑖𝑗(𝑠) − 𝑓 (𝜑𝑘𝑝(𝑠)) 𝜓𝑖𝑗(𝑠)| 𝑑𝑠 + 

 

+ ∫ 𝑒−𝛾(𝑡−𝑠)
𝑡

−∞

∑ 𝐷𝑖𝑗
𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

|𝑓(𝜑𝑘𝑝(𝑠))𝜓𝑖𝑗(𝑠) − 𝑓(𝜓𝑘𝑝(𝑠))𝜓𝑖𝑗(𝑠)|𝑑𝑠 ≤ 

 

≤
(𝐿𝐻 + 𝑚𝑓)

𝛾
max
(𝑖,𝑗)

∑ 𝐷𝑖𝑗
𝑘𝑝

||𝜑 − 𝜓||1.

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

 

 

This is why ||Π𝜑 − Π𝜓||1 ≤
(𝐿𝐻+𝑚𝑓)

𝛾
max
(𝑖,𝑗)

∑ 𝐷𝑖𝑗
𝑘𝑝

||𝜑 − 𝜓||1.𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)  Then 

condition (𝐷8) implies that the operator Π is contractive in the set ℬ. The lemma is 

proved. 

Theorem 2.2.1. Assume that conditions (D1)-(D8) are fulfilled, then the system 

(2.2.1) possesses a unique asymptotically stable strongly unpredictable solution. 
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Proof. Let us show that the space ℬ is complete. Consider a Cauchy sequence 

𝜙𝑘(𝑡) in ℬ, which converges to a limit function 𝜙(𝑡) on ℝ. It suffices to show that 

𝜙(𝑡) satisfies condition (ℬ3), since other two conditions can be easily checked. Fix a 

closed and bounded interval 𝐼 ⊂ ℝ. We have that: 

 

||𝜙(𝑡 + 𝑡𝑝) − 𝜙(𝑡)|| ≤ ||𝜙(𝑡 + 𝑡𝑝) − 𝜙𝑘(𝑡 + 𝑡𝑝)|| + ||𝜙𝑘(𝑡 + 𝑡𝑝) − 𝜙𝑘(𝑡)|| + 

 

+||𝜙𝑘(𝑡) − 𝜙(𝑡)||                                                       (2.2.7) 

 

Now, one can take sufficiently large 𝑝 and 𝑘 such that each term on right hand-side 

of (2.2.7) is smaller than 
𝜀

3
 for an arbitrary positive 𝜀 and 𝑡 ∈ 𝐼. The inequality implies 

that ||𝜙(𝑡 + 𝑡𝑝) − 𝜙(𝑡)|| ≤ 𝜀 on I. That is the sequence 𝜙(𝑡 + 𝑡𝑝) uniformly 

converges to 𝜙(𝑡) on I. The completeness of ℬ is proved. Now, by the contractive 

mapping theorem, duo to Lemmas 2.2.2 and 2.2.3, there exists a unique solution 

𝜔(𝑡) ∈ ℬ of the equation (2.2.1). 

Next, using the relations: 

 

𝜔𝑖𝑗(𝑡) = 𝜔𝑖𝑗(𝑠𝑝) − ∫ 𝑏𝑖𝑗𝜔𝑖𝑗(𝑠)𝑑𝑠 −
𝑡

𝑠𝑝

 

 

− ∫ ∑ 𝐷𝑖𝑗
𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

𝑓
𝑡

𝑠𝑝

(𝜔𝑘𝑝(𝑠))𝜔𝑖𝑗(𝑠)𝑑𝑠 + ∫ 𝑔𝑖𝑗(𝑠)𝑑𝑠
𝑡

𝑠𝑝

 

 

and 

𝜔𝑖𝑗(𝑡 + 𝑡𝑝) = 𝜔𝑖𝑗(𝑡𝑝 + 𝑠𝑝) − ∫ 𝑏𝑖𝑗𝜔𝑖𝑗(𝑠 + 𝑡𝑝)𝑑𝑠 −
𝑡

𝑠𝑝

 

 

− ∫ ∑ 𝐷𝑖𝑗
𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

𝑓
𝑡

𝑠𝑝

(𝜔𝑘𝑝(𝑠 + 𝑡𝑝))𝜔𝑖𝑗(𝑠 + 𝑡𝑝)𝑑𝑠 + ∫ 𝑔𝑖𝑗(𝑠 + 𝑡𝑝)𝑑𝑠
𝑡

𝑠𝑝

, 

 

we obtain that: 

 

𝜔𝑖𝑗(𝑡 + 𝑡𝑝) − 𝜔𝑖𝑗(𝑡) = 𝜔(𝑡𝑝 + 𝑠𝑝) − 𝜔(𝑠𝑝) − 

 

− ∫ 𝑏𝑖𝑗 (𝜔(𝑠 + 𝑡𝑝) − 𝜔(𝑠)) 𝑑𝑠
𝑡

𝑠𝑝

− ∫ (𝑔𝑖𝑗(𝑠 + 𝑡𝑝) − 𝑔𝑖𝑗(𝑠))𝑑𝑠
𝑡

𝑠𝑝

− 

 

− ∫ ∑ 𝐷𝑖𝑗
𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

(𝑓
𝑡

𝑠𝑝

(𝜔𝑘𝑝(𝑠 + 𝑡𝑝))𝜔𝑖𝑗(𝑠 + 𝑡𝑝) − 𝑓(𝜔𝑘𝑝(𝑠))𝜔𝑖𝑗(𝑠))𝑑𝑠.   (2.2.8) 
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There exist a positive number 𝜅 and integers 𝑙, 𝑘 such that the following 

inequalities are valid: 

 

𝜅 < 𝛿;         (2.2.9) 

    

𝜅 (
1

2
− (

1

𝑙
+

2

𝑘
)(�̅� + ∑ 𝐷𝑖𝑗

𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

(𝑚𝑓 + 𝐿𝐻))) ≥
3

2𝑙
;                   (2.2.10) 

             

|𝜔𝑖𝑗(𝑡 + 𝑠) − 𝜔𝑖𝑗(𝑡)| < 𝜀0𝑚𝑖𝑛(
1

𝑘
,

1

4𝑙
), 𝑡 ∈ ℝ, |𝑠| < 𝜅,                    (2.2.11) 

 

for all 𝑖 =  1,2, . . . , 𝑚, 𝑗 =  1,2, . . . , 𝑛. 
Let the numbers 𝜅, 𝑙 and k as well as numbers 𝑝 ∈ ℕ, and 𝑖 =  1,2, … , 𝑚, 𝑗 =

 1,2, . . . , 𝑛, be fixed. Denote ∆= |𝜔𝑖𝑗(𝑡𝑝 + 𝑠𝑝) − 𝜔𝑖𝑗(𝑠𝑝)| and consider two 

alternative cases: (i) ∆< 𝜀0/𝑙; (𝑖𝑖) ∆≥ 𝜀0/𝑙  such that the remaining proof falls 

naturally into two parts. 

(i) From (2.2.11) it follows that: 

 

|𝜔𝑖𝑗(𝑡 + 𝑠) − 𝜔𝑖𝑗(𝑡)| <
𝜀0

𝑙
+

𝜀0

𝑘
+

𝜀0

𝑘
= 𝜀0(

1

𝑙
+

2

𝑘
),                 (2.2.12) 

 

if 𝑡 ∈ [𝑠𝑝, 𝑠𝑝 + 𝜅]. 

 The inequalities (2.2.9) -(2.2.12) imply that: 

 

|𝜔𝑖𝑗(𝑡 + 𝑠) − 𝜔𝑖𝑗(𝑡)| ≥ ∫ |𝑔𝑖𝑗(𝑠 + 𝑡𝑝) − 𝑔𝑖𝑗(𝑠)|𝑑𝑠
𝑡

𝑠𝑝

− |𝜔(𝑡𝑝 + 𝑠𝑝) − 𝜔(𝑠𝑝)| − 

− ∫ 𝑏𝑖𝑗|𝜔(𝑠 + 𝑡𝑝) − 𝜔(𝑠)|𝑑𝑠 − ∫ ∑ 𝐷𝑖𝑗
𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

|𝑓
𝑡

𝑠𝑝

(
𝑡

𝑠𝑝

𝜔𝑘𝑝(𝑠 + 𝑡𝑝))𝜔𝑖𝑗(𝑠 + 𝑡𝑝) − 

 

−𝑓 (𝜔𝑘𝑝(𝑠)) 𝜔𝑖𝑗(𝑠)|𝑑𝑠 ≥ 𝜀0

𝜅

2
−

𝜀0

𝑙
− 𝜀0𝜅 (

1

𝑙
+

2

𝑘
) (�̅� + ∑ 𝐷𝑖𝑗

𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

(𝑚𝑓 + 𝐿𝐻)) 

 

=  𝜀0𝜅 (
1

2
− (

1

𝑙
+

2

𝑘
)(�̅� + ∑ 𝐷𝑖𝑗

𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

(𝑚𝑓 + 𝐿𝐻))) ≥
3𝜀0

2𝑙
, 

 

for 𝑡 ∈ [𝑠𝑝 +
𝜅

2
, 𝑠𝑝 + 𝜅]. 

(ii) For the case ∆≥ 𝜀0/𝑙, and each 𝑖 =  1,2, . . . , 𝑚, 𝑗 =  1,2, . . . , 𝑛,  it can 

easily find that (2.2.11) implies: 



54 

 

 

|𝜔𝑖𝑗(𝑡 + 𝑡𝑝) − 𝜔𝑖𝑗(𝑡)| ≥ |𝜔𝑖𝑗(𝑡𝑝 + 𝑠𝑝) − 𝜔𝑖𝑗(𝑠𝑝)| − |𝜔𝑖𝑗(𝑠𝑝) − 𝜔𝑖𝑗(𝑡)| − 

 

−|𝜔𝑖𝑗(𝑡 + 𝑡𝑝) − 𝜔𝑖𝑗(𝑡𝑝 + 𝑠𝑝)|  ≥  
𝜀0

𝑙
 −

𝜀0

4𝑙
−

𝜀0

4𝑙
=

𝜀0

2𝑙
, 

 

if 𝑡 ∈ [𝑠𝑝 − 𝜅, 𝑠𝑝 + 𝜅] and 𝑝 ∈ ℕ. Thus, one can conclude that 𝜔(𝑡) is a strongly 

unpredictable with �̅�𝑝 = 𝑠𝑝 +
3𝜅

4
, 𝛿̅ =

𝜅

4
.  

Finally, we will discuss the stability of the solution 𝜔(𝑡). It is true that: 

 

𝜔𝑖𝑗(𝑡) = 𝑒−𝑏𝑖𝑗(𝑡−𝑡0)𝜔𝑖𝑗(𝑡0) − 

 

               − ∫ 𝑒−𝑏𝑖𝑗(𝑡−𝑠) [ ∑ 𝐷𝑖𝑗
𝑘𝑝

𝑓(𝜔𝑘𝑝(𝑠))𝜔𝑖𝑗(𝑠) − 𝑔𝑖𝑗(𝑠)

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

] 𝑑𝑠
𝑡

𝑡0

, 

 

𝑖 =  1,2, . . . , 𝑚, 𝑗 =  1,2, . . . , 𝑛. 
 

Let 𝑧(𝑡) = (𝑧11(𝑡), 𝑧12(𝑡), . . . , 𝑧𝑚𝑛(𝑡)) be another solution of system (2.2.1). 

One can write: 

 

𝑧𝑖𝑗(𝑡) = 𝑒−𝑏𝑖𝑗(𝑡−𝑡0)𝑧𝑖𝑗(𝑡0) − 

             − ∫ 𝑒−𝑏𝑖𝑗(𝑡−𝑠) [ ∑ 𝐷𝑖𝑗
𝑘𝑝

𝑓(𝑧𝑘𝑝(𝑠))𝑧𝑖𝑗(𝑠) − 𝑔𝑖𝑗(𝑠)

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

] 𝑑𝑠
𝑡

𝑡0

, 

 

for all 𝑖 =  1,2, . . . , 𝑚, 𝑗 =  1,2, . . . , 𝑛. Making use of the relation 

 

𝑧𝑖𝑗(𝑡) − 𝜔𝑖𝑗(𝑡) = 𝑒−𝑏𝑖𝑗(𝑡−𝑡0)(𝑧𝑖𝑗(𝑡0) − 𝜔𝑖𝑗(𝑡0)) − 

 

− ∫ 𝑒−𝑏𝑖𝑗(𝑡−𝑠) [ ∑ 𝐷𝑖𝑗
𝑘𝑝

𝑓(𝜔𝑘𝑝(𝑠))𝜔𝑖𝑗(𝑠) − ∑ 𝐷𝑖𝑗
𝑘𝑝

𝑓(𝑧𝑘𝑝(𝑠))𝑧𝑖𝑗(𝑠)

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

] 𝑑𝑠
𝑡

𝑡0

, 

 

we obtain that 

 

|𝑧𝑖𝑗(𝑡) − 𝜔𝑖𝑗(𝑡)| ≤ 𝑒−𝛾(𝑡−𝑡0)|𝑧𝑖𝑗(𝑡0) − 𝜔𝑖𝑗(𝑡0)| + 

 

+𝑚𝑓 ∫ 𝑒−𝛾(𝑡−𝑠)
𝑡

𝑡0

∑ 𝐷𝑖𝑗
𝑘𝑝

|𝑧𝑖𝑗(𝑠) − 𝜔𝑖𝑗(𝑠)|𝑑𝑠

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

+ 
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 +𝐿𝐻 ∫ 𝑒−𝛾(𝑡−𝑠)
𝑡

𝑡0

∑ 𝐷𝑖𝑗
𝑘𝑝

|𝑧𝑘𝑝(𝑠) − 𝜔𝑖𝑗(𝑠)|𝑑𝑠

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

≤ 

 

≤ 𝑒−𝛾(𝑡−𝑡0)||𝑧𝑖𝑗(𝑡0) − 𝜔𝑖𝑗(𝑡0)|| + 

 

                                +𝑚𝑓 ∫ 𝑒−𝛾(𝑡−𝑠)
𝑡

𝑡0

∑ 𝐷𝑖𝑗
𝑘𝑝

||𝑧𝑖𝑗(𝑠) − 𝜔𝑖𝑗(𝑠)|| 𝑑𝑠

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

+ 

 

                                +𝐿𝐻 ∫ 𝑒−𝛾(𝑡−𝑠)
𝑡

𝑡0

∑ 𝐷𝑖𝑗
𝑘𝑝

||𝑧𝑘𝑝(𝑠) − 𝜔𝑖𝑗(𝑠)||𝑑𝑠

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗)

, 

 

for all 𝑖 =  1,2, . . . , 𝑚, 𝑗 =  1,2, . . . , 𝑛. 

Thus, one can be confirmed that: 

 

||𝑧(𝑡) − 𝜔(𝑡)|| ≤  𝑒−𝛾(𝑡−𝑡0)||𝑧(𝑡0) − 𝜔(𝑡0)|| + 𝐹 ∫ 𝑒−𝛾(𝑡−𝑠)||𝑧(𝑠) − 𝜔(𝑠)||𝑑𝑠
𝑡

𝑡0

, 

 

where 𝐹 = (𝐿𝐻 + 𝑚𝑓) max
(𝑖,𝑗)

∑ 𝐷𝑖𝑗
𝑘𝑝

𝐷𝑘𝑝∈𝑁𝑟(𝑖,𝑗) . Multiplying both sides of the last 

inequality by 𝑒𝛾𝑡 we obtain that: 

 

𝑒𝛾𝑡||𝑧(𝑡) − 𝜔(𝑡)|| ≤ 𝑒𝛾𝑡0||𝑧(𝑡0) − 𝜔(𝑡0)|| + 𝐹 ∫ 𝑒𝛾𝑠||𝑧(𝑠) − 𝜔(𝑠)||𝑑𝑠
𝑡

𝑡0

. 

 

Now, applying Gronwall-Belman Lemma, one can attain that: 

 

||𝑧(𝑡) − 𝜔(𝑡)|| ≤ ||𝑧(𝑡0) − 𝜔(𝑡0)||𝑒(𝐹−𝛾)(𝑡−𝑡0). 
 

The last inequality and condition (ℬ8) confirm that the strongly unpredictable 

solution 𝜔(𝑡) is uniformly asymptotically stable. The theorem is proved. 

Example 9. Consider the following SICNNs: 

 
𝑑𝑥𝑖𝑗

𝑑𝑡
= −𝑏𝑖𝑗𝑥𝑖𝑗 − ∑ 𝐷𝑖𝑗

𝑘𝑝
𝑓(𝑥𝑘𝑝(𝑡))𝑥𝑖𝑗(𝑡) + 𝑔𝑖𝑗(𝑡),

𝐷𝑘𝑝∈𝑁1(𝑖,𝑗)

            (2.2.13) 

                

where 𝑖, 𝑗 = 1,2,3, 
 

(

𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23

𝑏31 𝑏32 𝑏33

) = (
3 8 4
5 9 6
2 7 3

),      (
𝐷11 𝐷12 𝐷13

𝐷21 𝐷22 𝐷23

𝐷31 𝐷32 𝐷33

) = (
0.04 0.03 0
0.07 0.06 0.02
0.05 0 0.08

), 
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and 𝑓(𝑠) = 0.05𝑎𝑟𝑐𝑡𝑔(𝑠), 𝑔11(𝑡) = 25Θ3(𝑡) + 1,  𝑔12(𝑡) = 4Θ(𝑡), 𝑔13(𝑡) = 

= −3Θ(𝑡) + 2, 𝑔21(𝑡) = 2Θ(𝑡) + 2, 𝑔22(𝑡) = 17Θ3(𝑡), 𝑔23(𝑡) = 19Θ(𝑡) − 1, 
𝑔31(𝑡) = −7Θ(𝑡) + 2, 𝑔32(𝑡) = 3Θ(𝑡), 𝑔33(𝑡) = −13Θ3(𝑡) + 2, where Θ(𝑡) = 

= ∫ 𝑒−3(𝑡−𝑠)Ω(𝑠)𝑑𝑠
𝑡

−∞
 is the unpredictable function. Moreover, according to the 

properties of unpredictable functions, the functions 𝑔𝑖𝑗(𝑡), 𝑖 = 1,2,3, 𝑗 = 1,2,3, are 

unpredictable. We have that |𝑔𝑖𝑗(𝑡)| ≤ 𝑚𝑖𝑗 , where 𝑚11 = 1.93; 𝑚12 = 1.34; 

𝑚13 = 3; 𝑚21 = 8; 𝑚22 = 2.67; 𝑚23 = 7.34; 𝑚31 = 4.34; 𝑚32 = 1; 𝑚33 = 2.49. 

One can calculate that ∑ 𝐷11
𝑘𝑝

= 0.20𝐷𝑘𝑝∈𝑁1(1,1) , ∑ 𝐷12
𝑘𝑝

= 0.22𝐷𝑘𝑝∈𝑁1(1,2) , 

∑ 𝐷13
𝑘𝑝

= 0.11𝐷𝑘𝑝∈𝑁1(1,3) , ∑ 𝐷21
𝑘𝑝

= 0.25𝐷𝑘𝑝∈𝑁1(2,1) , ∑ 𝐷22
𝑘𝑝

= 0.35𝐷𝑘𝑝∈𝑁1(2,2) , 

∑ 𝐷23
𝑘𝑝

= 0.19𝐷𝑘𝑝∈𝑁1(2,3) , ∑ 𝐷31
𝑘𝑝

= 0.18𝐷𝑘𝑝∈𝑁1(3,1) , ∑ 𝐷32
𝑘𝑝

= 0.28𝐷𝑘𝑝∈𝑁1(3,2) , 

∑ 𝐷33
𝑘𝑝

= 0.16𝐷𝑘𝑝∈𝑁1(3,3) . The conditions (ℬ1) -(ℬ8) hold for the network (2.2.13) 

with 𝛾 = 2, �̅� = 9, 𝑚𝑓 = 0.079, 𝐿 = 0.05 and 𝐻 = 2. 

 In figure 12 we depict the coordinates of the function 𝜙(𝑡) with initial values 

𝜙11(0) = 1.0245, 𝜙12(0) = 0.2996, 𝜙13(0) = 0.0837, 𝜙21(0) = 0.8283, 

𝜙22(0) = 0.0413, 𝜙23(0) = 1.8122, 𝜙31(0) = 1.0678, 𝜙32(0) = 0.2013, 

𝜙33(0) = 0.0999. The function 𝜙(𝑡) approximates the coordinates of the 

unpredictable solution 𝑥(𝑡) of the equation (2.2.13), as time increases. This can be 

shown in the same way as for function Θ(𝑡). The 2-dimensional projection of the 

same solution on the 𝜙11 − 𝜙12 plane and 3-dimensional projection on the 𝜙11 −
𝜙12 − 𝜙23 space is shown in figure 13, respectively.  

 

 
 

Figure 12 – The coordinates of the function 𝜙(𝑡), which exponentially converge to 

the coordinates of the strongly unpredictable solution of the SICNNs (2.3.13) 
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Figure 13 – The 2 and 3-dimensional projection of the trajectory of SICNNs (2.3.13) 

on the 𝜙11 − 𝜙12 plane and 𝜙11 − 𝜙12 − 𝜙23 space 

 

2.3 Unpredictable oscillations of INNs 

Most of the INN models are different from the traditional neural networks [85, 

р. 215; 95, 96] described by the first-order differential equations and it is more 

complex and more difficult to discuss their dynamical behaviors. Moreover, there 

exist significant backgrounds for investigating the inertial term in neural systems. For 

instance, the squid axon has a phenomenological inductance (Mauro, Conti, Dodge, 

and Schor, 1970) [97], the quasiactive membrane behavior of neurons can be 

modeled by adding inductance which makes the membrane to have electrical tuning, 

filtering behaviors (Koch, 1984) [98], the membrane of a hair cell in semicircular 

canals, can be implemented by equivalent circuits that contain an inductance 

(Angelaki and Correia, 1991) [99]. Therefore, some authors investigated neural 

networks by adding inertia. For, example, BAM neural networks [100-105], inertial 

CGNNs [106, 107], electronic neural networks with inertia [108], inertial memristive 

neural networks [109-111] have been studied. 

Let us consider the following INNs: 

 

𝑑2𝑥𝑖(𝑡)

𝑑𝑡2
= −𝑎𝑖

𝑑𝑥𝑖(𝑡)

𝑑𝑡
− 𝑏𝑖𝑥𝑖(𝑡) + ∑ 𝑐𝑖𝑗𝑓𝑗(𝑥𝑗(𝑡)) + 𝑣𝑖(𝑡),

𝑝

𝑗=1

                   (2.3.1) 

 

where 𝑡, 𝑥𝑖 ∈ ℝ, 𝑖 = 1,2, . . . , 𝑝, 𝑝 denotes the number of neurons in the network; 

𝑥𝑖(𝑡) with 𝑖 = 1,2, . . . , 𝑝, corresponds to the state of the unit i at time 𝑡; the 

second derivative is called an inertial term; 

𝑏𝑖 > 0, 𝑎𝑖 > 0 are constants; 

𝑓𝑖 with 𝑖 = 1,2, . . . , 𝑝, denote the measures of activation to its incoming 

potentials of ith neuron; 
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𝑐𝑖𝑗 for all 𝑖, 𝑗 = 1,2, . . . , 𝑝, are constants, which denote the synaptic connection 

weight of the unit j on the unit i; 

𝑣𝑖(𝑡) are external inputs on the ith neuron at time t.  

We assume that the coefficients 𝑐𝑖𝑗 are real, the activation functions 𝑓𝑖: ℝ → ℝ 

are continuous functions satisfy the following condition: 

(𝐼1) |𝑓𝑖(𝑥1) − 𝑓𝑖(𝑥2)| ≤ 𝐿𝑖|𝑥1 − 𝑥2| for all 𝑥1, 𝑥2 ∈ ℝ, where 𝐿𝑖 > 0 are 

Lipschitz constant, for all 𝑖 = 1,2, . . . , 𝑝, and max
1≤𝑖≤𝑝

𝐿𝑖 = 𝐿. 

By introducing the following variable transformation:  
 

𝑦𝑖(𝑡) = 𝜉𝑖

𝑑𝑥𝑖(𝑡)

𝑑𝑡
+ 𝜁𝑖𝑥𝑖(𝑡), 𝑖 = 1, … , 𝑝,                            (2.3.2) 

                                               

the neural network (2.3.1) can be written as: 

 
𝑑𝑥𝑖(𝑡)

𝑑𝑡
= −

𝜁𝑖

𝜉𝑖
𝑥𝑖(𝑡) +

1

𝜉𝑖
𝑦𝑖(𝑡),                                                      (2.3.3) 

 

𝑑𝑦𝑖(𝑡)

𝑑𝑡
= − (𝑎𝑖 −

𝜁𝑖

𝜉𝑖
) 𝑦𝑖(𝑡) − (𝜉𝑖𝑏𝑖 − 𝜁𝑖 (𝑎𝑖 −

𝜁𝑖

𝜉𝑖
)) 𝑥𝑖(𝑡) + 

+𝜉𝑖 ∑ 𝑐𝑖𝑗𝑓𝑗(𝑥𝑗(𝑡))

𝑝

𝑗=1

+ 𝜉𝑖𝑣𝑖(𝑡),                                                 (2.3.4) 

 

According to the results in [112], the couple 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑝(𝑡)), 

y(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑝(𝑡)), is a bounded solution of (2.3.3), (2.3.4), if and only 

if the next integral equations are satisfied: 

 

𝑥𝑖(𝑡) =
1

𝜉𝑖
∫ 𝑒

−
𝜁𝑖
𝜉𝑖

(𝑡−𝑠)
𝑦𝑖(𝑡)𝑑𝑠

𝑡

−∞

,                                     (2.3.5) 

 

𝑦𝑖(𝑡) = ∫ 𝑒
−(𝑎𝑖−

𝜁𝑖
𝜉𝑖

)(𝑡−𝑠)

𝑡

−∞

[(𝜉𝑖𝑏𝑖 − 𝜁𝑖(𝑎𝑖 −
𝜁𝑖

𝜉𝑖
))𝑥𝑖(𝑡) + 𝜉𝑖 ∑ 𝑐𝑖𝑗𝑓𝑗 (𝑥𝑗(𝑡))

𝑝

𝑗=1

+ 

 

+𝜉𝑖𝑣𝑖(𝑡)]𝑑𝑠,                                                          (2.3.6)                                                  

 

where 𝑖 = 1, … , 𝑝. In what follows, we shall focus on the integral equations (2.4.5) 

and (2.3.6). 

 Denote by Σ the set of vector-functions, 𝜑(𝑡) = (𝜑1, 𝜑2, . . . , 𝜑2𝑝), such that: 

(K1) functions 𝜑(𝑡) are uniformly continuous; 

(K2) there exists a positive number 𝐻 such that ||𝜑||1 < 𝐻 for all 𝜑(𝑡); 
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(K3) there exists a sequence, 𝑡𝑛 → ∞ as 𝑛 → ∞ such that 𝜑(𝑡 + 𝑡𝑛) uniformly 

converges to 𝜑(𝑡) on each bounded interval of the real line. 

Define on Σ an operator Π, such that: 

  

Πφ(t) = (Π1𝜑1(𝑡), Π2𝜑2(𝑡), . . . , Π2𝑝𝜑2𝑝(𝑡))  

 

and  

 

Π𝑖𝜑𝑖(𝑡) =
1

𝜉𝑖
∫ 𝑒

−
𝜁𝑖
𝜉𝑖

(𝑡−𝑠)
𝜑𝑖+𝑝(𝑠)𝑑𝑠

𝑡

−∞

, 𝑖 = 1,2, . . . , 𝑝,            (2.3.7) 

 

and  

 

Π𝑖𝜑𝑖(𝑡) = ∫ 𝑒
−(𝑎𝑖−𝑝−

𝜁𝑖−𝑝

𝜉𝑖−𝑝
)(𝑡−𝑠)

𝑡

−∞

[(𝜉𝑖−𝑝𝑏𝑖−𝑝 − 𝜁𝑖−𝑝 (𝑎𝑖−𝑝 −
𝜁𝑖−𝑝

𝜉𝑖−𝑝
)) 𝜑𝑖−𝑝(𝑡) + 

 

+𝜉𝑖−𝑝 ∑ 𝑐(𝑖−𝑝)𝑗𝑓𝑗(𝜑𝑗(𝑡))

𝑝

𝑗=1

+ 𝜉𝑖−𝑝𝑣𝑖−𝑝(𝑡)]𝑑𝑠, 𝑖 = 𝑝 + 1, … ,2𝑝.            (2.3.8) 

 

The following conditions will be needed throughout the paper: 

(𝐼2) the functions 𝑣𝑖(𝑡), 𝑖 = 1, . . . , 𝑝, in system (2.3.1) are unpredictable, they 

belong to Σ and there exist positive numbers 𝜀0, 𝛿 and the sequence 𝑠𝑛 → ∞ as 𝑛 →
∞, such that |𝑣𝑖(𝑡 + 𝑡𝑛) − 𝑣𝑖(𝑡)| ≥ 𝜀0 for all 𝑡 ∈ [𝑠𝑛 − 𝛿, 𝑠𝑛 + 𝛿], 𝑖 = 1, . . . , 𝑝, and 

𝑛 ∈ ℕ; 

(𝐼3) there exists a positive number 𝑀𝑓 such that |𝑓𝑖(𝑠)| ≤ 𝑀𝑓 , 𝑖 =

1, . . . , 𝑝, |𝑠| < 𝐻. 

Moreover, we assume that for positive real numbers 𝜁𝑖   and 𝜉𝑖 , 𝑖 = 1, . . . , 𝑝 the 

following inequalities are valid: 

 

 (𝐼4) 𝑎𝑖 >
𝜁𝑖

𝜉𝑖
+ 𝜉𝑖 , 𝜁𝑖 > 𝜉𝑖 > 1; 

 

 (𝐼5) (𝑎𝑖 −
𝜁𝑖

𝜉𝑖
) − (|𝜁𝑖 (𝑎𝑖 −

𝜁𝑖

𝜉𝑖
) − 𝜉𝑖𝑏𝑖| + 𝜉𝑖) > 0; 

 

 (𝐼6) 
𝜉𝑖𝑀𝑓 ∑ 𝑐𝑖𝑗

𝑝
𝑗=1

(𝑎𝑖−
𝜁𝑖
𝜉𝑖

)−(|𝜁𝑖(𝑎𝑖−
𝜁𝑖
𝜉𝑖

)−𝜉𝑖𝑏𝑖|+𝜉𝑖)
< 𝐻; 

 

 (𝐼7) 
1

(𝑎𝑖−
𝜁𝑖
𝜉𝑖

)
(|𝜁𝑖 (𝑎𝑖 −

𝜁𝑖

𝜉𝑖
) − 𝜉𝑖𝑏𝑖| + 𝐿𝜉𝑖 ∑ 𝑐𝑖𝑗

𝑝
𝑗=1 ) < 1; 
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 (𝐼8) max
𝑖

(
1

𝜉𝑖
, |𝜁𝑖 (𝑎𝑖 −

𝜁𝑖

𝜉𝑖
) − 𝜉𝑖𝑏𝑖| + 𝐿𝜉𝑖 ∑ 𝑐𝑖𝑗

𝑝
𝑗=1 ) < min

𝑖
(

𝜁𝑖

𝜉𝑖
, 𝑎𝑖 −

𝜁𝑖

𝜉𝑖
). 

 

Lemma 2.3.1. The operator Π is invariant in Σ. 

Proof. For a function 𝜑(𝑡) ∈ Σ and fixed 𝑖 = 1, . . . ,2𝑝, we have that 

 

|Π𝑖𝜑𝑖(𝑡)| = |
1

𝜉𝑖
∫ 𝑒

−
𝜁𝑖
𝜉𝑖

(𝑡−𝑠)
𝜑𝑖+𝑝(𝑠)𝑑𝑠

𝑡

−∞

| ≤
1

𝜁𝑖
|𝜑𝑖+𝑝(𝑡)| ≤

𝐻

𝜁𝑖
, 

 

for  𝑖 = 1, . . . , 𝑝, and 

 

|Π𝑖𝜑𝑖(𝑡)| = | ∫ 𝑒
−(𝑎𝑖−𝑝−

𝜁𝑖−𝑝

𝜉𝑖−𝑝
)(𝑡−𝑠)

𝑡

−∞

[(𝜉𝑖−𝑝𝑏𝑖−𝑝 − 𝜁𝑖−𝑝 (𝑎𝑖−𝑝 −
𝜁𝑖−𝑝

𝜉𝑖−𝑝
)) 𝜑𝑖−𝑝(𝑡) + 

 

+𝜉𝑖−𝑝 ∑ 𝑐(𝑖−𝑝)𝑗𝑓𝑗 (𝜑𝑗(𝑡))

𝑝

𝑗=1

+ 𝜉𝑖−𝑝𝑣𝑖−𝑝(𝑡)]𝑑𝑠| ≤ 

 

≤ ∫ 𝑒
−(𝑎𝑖−𝑝−

𝜁𝑖−𝑝

𝜉𝑖−𝑝
)(𝑡−𝑠)

𝑡

−∞

[|𝜉𝑖−𝑝𝑏𝑖−𝑝 − 𝜁𝑖−𝑝 (𝑎𝑖−𝑝 −
𝜁𝑖−𝑝

𝜉𝑖−𝑝
) |𝐻 + 

+𝜉𝑖−𝑝 ∑ 𝑐(𝑖−𝑝)𝑗𝑀𝑓

𝑝

𝑗=1

+ 𝜉𝑖−𝑝𝐻]𝑑𝑠 ≤ 

 

≤
1

(𝑎𝑖 −
𝜁𝑖

𝜉𝑖
)

[𝐻(|𝜉𝑖−𝑝𝑏𝑖−𝑝 − 𝜁𝑖−𝑝 (𝑎𝑖−𝑝 −
𝜁𝑖−𝑝

𝜉𝑖−𝑝
) | + 𝜉𝑖−𝑝 + 𝜉𝑖−𝑝 ∑ 𝑐(𝑖−𝑝)𝑗𝑀𝑓

𝑝

𝑗=1

)], 

 

for 𝑖 = 𝑝 + 1, … ,2𝑝. 
Conditions (I5), (I6) imply that |Π𝑖𝜑𝑖(𝑡)| < 𝐻, for each 𝑖 = 1, . . . ,2𝑝. So that 

||Π𝜑||1 = max
𝑖

|Π𝑖𝜑𝑖| < 𝐻. Thus, condition (K2) is valid. 

Let us fix a positive number 𝜀 and a section [𝑎, 𝑏], −∞ < 𝑎 < 𝑏 < ∞. We will 

show that for sufficiently large 𝑛 it is true that ||Π𝜑(𝑡 + 𝑡𝑛) − Π𝜑(𝑡)||1 < 𝜀 on 

[𝑎, 𝑏]. One can find that 

 

|Π𝑖𝜑𝑖(𝑡 + 𝑡𝑛) − Π𝑖𝜑𝑖(𝑡)| = |
1

𝜉𝑖
∫ 𝑒

−
𝜁𝑖
𝜉𝑖

(𝑡−𝑠)
(𝜑𝑖+𝑝(𝑠 + 𝑡𝑛) − 𝜑𝑖+𝑝(𝑠))𝑑𝑠

𝑡

−∞

|, 

 

for 𝑖 = 1, . . . , 𝑝, and 
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|Π𝑖𝜑𝑖(𝑡 + 𝑡𝑛) − Π𝑖𝜑𝑖(𝑡)| = 

 

= | ∫ 𝑒
−(𝑎𝑖−𝑝−

𝜁𝑖−𝑝

𝜉𝑖−𝑝
)(𝑡−𝑠)

𝑡

−∞

[(𝜉𝑖−𝑝𝑏𝑖−𝑝 − 𝜁𝑖−𝑝(𝑎𝑖−𝑝 −
𝜁𝑖−𝑝

𝜉𝑖−𝑝
))(𝜑𝑖−𝑝(𝑠 + 𝑡𝑛) − 𝜑𝑖−𝑝(𝑠)) 

 

+𝜉𝑖−𝑝 ∑ 𝑐(𝑖−𝑝)𝑗 (𝑓𝑗 (𝜑𝑗(𝑠 + 𝑡𝑛)) − 𝑓𝑗 (𝜑𝑗(𝑠)))

𝑝

𝑗=1

+ 

 

+𝜉𝑖−𝑝(𝑣𝑖−𝑝(𝑠 + 𝑡𝑛) − 𝑣𝑖−𝑝(𝑠))]𝑑𝑠|, 

 

for 𝑖 = 𝑝 + 1, . . . ,2𝑝. 
Choose numbers 𝑐 < 𝑎 and 𝜉 > 0, satisfying the following inequalities: 

 

2𝐻

𝜁𝑖
𝑒

−
𝜁𝑖
𝜉𝑖

(𝑎−𝑐)
<

𝜀

2
,                                                    (2.3.9) 

 

2𝐻

𝑎𝑖 −
𝜁𝑖

𝜉𝑖

(|𝜁𝑖(𝑎𝑖 −
𝜁𝑖

𝜉𝑖
) − 𝜉𝑖𝑏𝑖| + 𝐿𝜉𝑖 ∑ 𝑐𝑖𝑗

𝑝

𝑗=1

+ 𝜉𝑖)𝑒
−(𝑎𝑖−

𝜁𝑖
𝜉𝑖

)(𝑎−𝑐)
<

𝜀

2
, (2.3.10) 

 
𝜉

𝜁𝑖
<

𝜀

2
,                                                           (2.3.11) 

 

 
𝜉

(𝑎𝑖−
𝜁𝑖
𝜉𝑖

)
(|𝜁𝑖 (𝑎𝑖 −

𝜁𝑖

𝜉𝑖
) − 𝜉𝑖𝑏𝑖| + 𝐿𝜉𝑖 ∑ 𝑐𝑖𝑗

𝑝
𝑗=1 ) <  

𝜀

2
,           (2.3.12) 

 

Consider the number 𝑛 sufficiently large such that |𝜑𝑖(𝑡 + 𝑡𝑛) − 𝜑𝑖(𝑡)| < 𝜉, 
 𝑖 = 1, . . . ,2𝑝, and |𝑣𝑖(𝑡 + 𝑡𝑛) − 𝑣𝑖(𝑡)| < 𝜉, 𝑖 = 1, . . . , 𝑝, on 𝑡 ∈ [𝑐, 𝑏]. Then, for all 

𝑡 ∈ [𝑎, 𝑏], it is true that: 

 

|Π𝑖𝜑𝑖(𝑡 + 𝑡𝑛) − Π𝑖𝜑𝑖(𝑡)| ≤ |
1

𝜉𝑖
∫ 𝑒

−
𝜁𝑖
𝜉𝑖

(𝑡−𝑠)
(𝜑𝑖+𝑝(𝑠 + 𝑡𝑛) − 𝜑𝑖+𝑝(𝑠)) 𝑑𝑠

𝑐

−∞

| + 

 

+|
1

𝜉𝑖
∫ 𝑒

−
𝜁𝑖
𝜉𝑖

(𝑡−𝑠)
(𝜑𝑖+𝑝(𝑠 + 𝑡𝑛) − 𝜑𝑖+𝑝(𝑠))𝑑𝑠

𝑡

𝑐

| ≤
2𝐻

𝜁𝑖
𝑒

−
𝜁𝑖
𝜉𝑖

(𝑎−𝑐)
+

𝜉

𝜁𝑖
, 

 

for 𝑖 = 1, . . . , 𝑝, and 

|Π𝑖𝜑𝑖(𝑡 + 𝑡𝑛) − Π𝑖𝜑𝑖(𝑡)| ≤ 
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≤ | ∫ 𝑒
−(𝑎𝑖−𝑝−

𝜁𝑖−𝑝

𝜉𝑖−𝑝
)(𝑡−𝑠)

𝑐

−∞

[(𝜉𝑖−𝑝𝑏𝑖−𝑝 − 𝜁𝑖−𝑝(𝑎𝑖−𝑝 −
𝜁𝑖−𝑝

𝜉𝑖−𝑝
))(𝜑𝑖−𝑝(𝑠 + 𝑡𝑛) − 𝜑𝑖−𝑝(𝑠)) 

 

+𝜉𝑖−𝑝 ∑ 𝑐(𝑖−𝑝)𝑗 (𝑓𝑗 (𝜑𝑗(𝑠 + 𝑡𝑛)) − 𝑓𝑗 (𝜑𝑗(𝑠)))

𝑝

𝑗=1

+ 

 

+𝜉𝑖−𝑝(𝑣𝑖−𝑝(𝑠 + 𝑡𝑛) − 𝑣𝑖−𝑝(𝑠))]𝑑𝑠| + 

 

+| ∫ 𝑒
−(𝑎𝑖−𝑝−

𝜁𝑖−𝑝

𝜉𝑖−𝑝
)(𝑡−𝑠)

𝑡

𝑐

[(𝜉𝑖−𝑝𝑏𝑖−𝑝 − 𝜁𝑖−𝑝(𝑎𝑖−𝑝 −
𝜁𝑖−𝑝

𝜉𝑖−𝑝
))(𝜑𝑖−𝑝(𝑠 + 𝑡𝑛) − 𝜑𝑖−𝑝(𝑠)) 

 

+𝜉𝑖−𝑝 ∑ 𝑐(𝑖−𝑝)𝑗(𝑓𝑗(𝜑𝑗(𝑠 + 𝑡𝑛)) − 𝑓𝑗(𝜑𝑗(𝑠)))

𝑝

𝑗=1

+ 𝜉𝑖−𝑝(𝑣𝑖−𝑝(𝑠 + 𝑡𝑛)𝑣𝑖−𝑝(𝑠))]𝑑𝑠| ≤ 

 

≤
1

𝑎𝑖 −
𝜁𝑖

𝜉𝑖

(2𝐻 |𝜁𝑖(𝑎𝑖 −
𝜁𝑖

𝜉𝑖
) − 𝜉𝑖𝑏𝑖| + 2𝐻𝐿𝜉𝑖 ∑ 𝑐𝑖𝑗

𝑝

𝑗=1

+ 2𝐻𝜉𝑖)𝑒
−(𝑎𝑖−

𝜁𝑖
𝜉𝑖

)(𝑎−𝑐)
+ 

 

+
1

(𝑎𝑖 −
𝜁𝑖

𝜉𝑖
)

(|𝜁𝑖 (𝑎𝑖 −
𝜁𝑖

𝜉𝑖
) − 𝜉𝑖𝑏𝑖|𝜉 + 𝐿𝜉𝑖 ∑ 𝑐𝑖𝑗

𝑝

𝑗=1

𝜉), 

 

for 𝑖 = 𝑝 + 1, . . . ,2𝑝. 
The inequalities (2.3.9) -(2.3.12) imply that ||Π𝜑(𝑡 + 𝑡𝑛) − Π𝜑(𝑡)||1 < 𝜀, for 

𝑡 ∈ [𝑎, 𝑏]. Since 𝜀 is arbitrary small number, the condition (K3) is satisfied. 

Condition (K1) follows from the boundedness of its derivative. The lemma is proved. 

Lemma 2.3.2. The operator Π is a contraction mapping on  Σ. 

Proof. For 𝑢, 𝑣 ∈ Σ, one can attain that: 

 

|Π𝑖𝑢𝑖(𝑡) − Π𝑖𝑣𝑖(𝑡)| ≤

≤ |
1

𝜉𝑖
∫ 𝑒

−
𝜁𝑖
𝜉𝑖

(𝑡−𝑠)
(𝑢𝑖+𝑝(𝑠) − 𝑣𝑖+𝑝(𝑠)) 𝑑𝑠 ≤

1

𝜁𝑖

𝑡

−∞

||𝑢(𝑡) − 𝑣(𝑡)||1, 

 

𝑖 = 1, . . . , 𝑝, and 

 
|Π𝑖𝑢𝑖(𝑡) − Π𝑖𝑣𝑖(𝑡)| ≤ 
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≤ | ∫ 𝑒
−(𝑎𝑖−𝑝−

𝜁𝑖−𝑝

𝜉𝑖−𝑝
)(𝑡−𝑠)

𝑐

−∞

[(𝜉𝑖−𝑝𝑏𝑖−𝑝 − 𝜁𝑖−𝑝(𝑎𝑖−𝑝 −
𝜁𝑖−𝑝

𝜉𝑖−𝑝
))(𝑢𝑖−𝑝(𝑠) − 𝑣𝑖−𝑝(𝑠)) + 

 

+𝜉𝑖−𝑝 ∑ 𝑐(𝑖−𝑝)𝑗(𝑓𝑗 (𝑢𝑗(𝑠)) − 𝑓𝑗 (𝑣𝑗(𝑠))

𝑝

𝑗=1

)]𝑑𝑠| ≤ 

 

≤
1

(𝑎𝑖 −
𝜁𝑖

𝜉𝑖
)

(|𝜁𝑖−𝑝(𝑎𝑖−𝑝 −
𝜁𝑖−𝑝

𝜉𝑖−𝑝
) − 𝜉𝑖−𝑝𝑏𝑖−𝑝| + 𝐿𝜉𝑖−𝑝 ∑ 𝑐(𝑖−𝑝)𝑗

𝑝

𝑗=1

)|𝑢(𝑡) − 𝑣(𝑡)||1, 

 

𝑖 = 𝑝 + 1, . . . ,2𝑝. 

The last inequalities yield ||Π𝑢 − Π𝑣||1 = max
𝑖

(
1

𝜉𝑖
,  

1

(𝑎𝑖−
𝜁𝑖
𝜉𝑖

)
(|𝜁𝑖 (𝑎𝑖 −

𝜁𝑖

𝜉𝑖
) −

𝜉𝑖𝑏𝑖| + +𝐿𝜉𝑖 ∑ 𝑐𝑖𝑗
𝑝
𝑗=1 ))||𝑢 − 𝑣||1. Hence, in accordance with conditions (I4), (I7) the 

operator Π is contractive. 

Theorem 2.3.1. Assume that conditions (I1) -(I8) are fulfilled. Then the system 

(2.3.1) admits a unique asymptotically stable unpredictable solution. 

Proof. Let us show that the space Σ is complete. Consider a Cauchy sequence 

𝜙𝑘(𝑡) in Σ, which converges to a limit function 𝜙(𝑡) on ℝ. It suffices to show that 

𝜙(𝑡)  satisfies condition (K3), since other two conditions can be easily checked. Fix a 

closed and bounded interval 𝐼 ⊂ ℝ. We have that: 

 

||𝜙(𝑡 + 𝑡𝑛) − 𝜙(𝑡)|| ≤ ||𝜙(𝑡 + 𝑡𝑛) − 𝜙𝑘(𝑡 + 𝑡𝑛)|| + ||𝜙𝑘(𝑡 + 𝑡𝑛)|| − 𝜙𝑘(𝑡)|| + 

 

+||𝜙𝑘(𝑡) − 𝜙(𝑡)||                                                       (2.3.13)                                                                                                      

 

Now, one can take sufficiently large 𝑛 and 𝑘 such that each term on right hand-

side of (2.3.11) is smaller than 
𝜀

3
 for an arbitrary positive 𝜀 and 𝑡 ∈ 𝐼. The inequality 

implies that ||𝜙(𝑡 + 𝑡𝑝) − 𝜙(𝑡)|| ≤ 𝜀 on I. That is the sequence 𝜙(𝑡 + 𝑡𝑛) uniformly 

converges to 𝜙(𝑡) on I. The completeness of Σ is proved. By the contractive mapping 

theorem, duo to Lemmas 2.3.1 and 2.3.2, there exists a unique solution 𝜔(𝑡) ∈ Σ of 

the equation (2.3.1). 

Next, we prove the unpredictability property for 𝜔(𝑡). It is true that: 

 

𝜔𝑖(𝑡 + 𝑡𝑛) − 𝜔𝑖(𝑡) = 𝜔𝑖(𝑠𝑛 + 𝑡𝑛) − 𝜔𝑖(𝑠𝑛) − ∫
𝜁𝑖

𝜉𝑖
(𝜔𝑖(𝑠 + 𝑡𝑛) − 𝜔𝑖(𝑠))𝑑𝑠

𝑡

𝑠𝑛

+ 
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+ ∫
1

𝜉𝑖
(𝜔𝑖+𝑝(𝑠 + 𝑡𝑛) − 𝜔𝑖+𝑝(𝑠)) 𝑑𝑠,

𝑡

𝑠𝑛

 for 𝑖 = 1, . . . , 𝑝,                    (2.3.14) 

 

and 

 

𝜔𝑖(𝑡 + 𝑡𝑛) − 𝜔𝑖(𝑡) = 𝜔𝑖(𝑠𝑛 + 𝑡𝑛) − 𝜔𝑖(𝑠𝑛) − 

 

− ∫ (𝑎𝑖−𝑝 −
𝜁𝑖−𝑝

𝜉𝑖−𝑝
) (𝜔𝑖(𝑠 + 𝑡𝑛) − 𝜔𝑖(𝑠))𝑑𝑠

𝑡

𝑠𝑛

− 

− ∫ (𝜁𝑖−𝑝 (𝑎𝑖−𝑝 −
𝜁𝑖−𝑝

𝜉𝑖−𝑝
) − 𝜉𝑖−𝑝𝑏𝑖−𝑝) (𝜔𝑖−𝑝(𝑠 + 𝑡𝑛) − 𝜔𝑖−𝑝(𝑠)) 𝑑𝑠 +

𝑡

𝑠𝑛

 

 

+ ∫ 𝜉𝑖−𝑝 ∑ 𝑐(𝑖−𝑝)𝑗(𝑓𝑗 (𝜔𝑗(𝑠 + 𝑡𝑛)) − 𝑓𝑗 (𝜔𝑗(𝑠))

𝑝

𝑗=1

)𝑑𝑠

𝑡

𝑠𝑛

+ 

 

+ ∫ 𝜉𝑖−𝑝 (𝜐𝑖−𝑝(𝑠 + 𝑡𝑛) − 𝜐𝑖−𝑝(𝑠)) 𝑑𝑠,

𝑡

𝑠𝑛

 for 𝑖 = 𝑝 + 1, . . . ,2𝑝.        (2.3.15) 

 

There exist a positive number 𝜅 and and integer 𝑙 such that the following 

inequalities are valid for all 𝑖 = 1, . . . , 𝑝: 

 

𝜅 < 𝛿,                                                                 (2.3.16) 

 

𝜉𝑖𝜅 ≥
3

2𝑙
𝜅 [(𝑎𝑖 −

𝜁𝑖

𝜉𝑖
) + |𝜁𝑖(𝑎𝑖 −

𝜁𝑖

𝜉𝑖
) − 𝜉𝑖𝑏𝑖| + 𝐿𝜉𝑖 ∑ 𝑐𝑖𝑗

𝑝

𝑗=1

] + 𝜅
1

𝑙
+

1

2𝑙
,      (2.3.17) 

 
𝜅

𝜉𝑖
≥

3

𝑙
(𝜅

𝜁𝑖

𝜉𝑖
+ 1),                                           (2.3.18) 

 

and 

 

 𝜔𝑖(𝑡 + 𝑠) − 𝜔𝑖(𝑡) <
𝜀0

4𝑙2
, for 𝑖 = 1,2, . . . ,2𝑝, 𝑡 ∈ ℝ, |𝑠| < 𝜅,       (2.3.19) 

 

where 𝛿 satisfies to condition (I2). Let the numbers 𝜅 and 𝑙 as well as number 𝑛 ∈ ℕ 

be fixed. 
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Let us, first, fix one of the coordinates 𝑖 = 𝑝 + 1, 𝑝 + 2, . . . ,2𝑝. The proof 

naturally falls into two parts: (i) Δ1 = |𝜔𝑖(𝑡𝑛 + 𝑠𝑛) − 𝜔𝑖(𝑠𝑛)| ≥ 𝜀0/𝑙 and  

(ii) Δ1 = |𝜔𝑖(𝑡𝑛 + 𝑠𝑛) − 𝜔𝑖(𝑠𝑛)| < 𝜀0/𝑙. 
(i) For the case  Δ1 ≥ 𝜀0/𝑙, by (2.3.19) we get that: 

  
|𝜔𝑖(𝑡 + 𝑡𝑛) − 𝜔𝑖(𝑡)| ≥ |𝜔𝑖(𝑡𝑛 + 𝑠𝑛) − 𝜔𝑖(𝑠𝑛)| − |𝜔𝑖(𝑠𝑛) − 𝜔𝑖(𝑡)| − 

 

−|𝜔𝑖(𝑡 + 𝑡𝑛) − 𝜔𝑖(𝑡𝑛 + 𝑠𝑛)| ≥
𝜀0

𝑙
−

𝜀0

4𝑙2
−

𝜀0

4𝑙2
≥

𝜀0

𝑙
−

𝜀0

2𝑙2
≥

𝜀0

2𝑙
,      (2.3.20) 

 

if 𝑡 ∈ [𝑠𝑛 − 𝜅, 𝑠𝑛 + 𝜅], 𝑖 = 𝑝 + 1, 𝑝 + 2, . . . ,2𝑝, and 𝑛 ∈ ℕ. 

(ii) From (2.3.19) it follows that: 

 
|𝜔𝑖(𝑡 + 𝑡𝑛) − 𝜔𝑖(𝑡)| ≤ |𝜔𝑖(𝑡𝑛 + 𝑠𝑛) − 𝜔𝑖(𝑠𝑛)| + |𝜔𝑖(𝑠𝑛) − 𝜔𝑖(𝑡)| + 

 

+|𝜔𝑖(𝑡 + 𝑡𝑛) − 𝜔𝑖(𝑡𝑛 + 𝑠𝑛)| ≤
𝜀0

𝑙
+

𝜀0

4𝑙2
+

𝜀0

4𝑙2
<

3𝜀0

2𝑙
, 𝑖 = 1,2, . . . ,2𝑝,   (2.3.21)                 

  

if 𝑡 ∈ [𝑠𝑛, 𝑠𝑛 + 𝜅].      
Now, using (2.3.16), (2.3.21) and relation (2.3.15), we have that: 

 

|𝜔𝑖(𝑡 + 𝑡𝑛) − 𝜔𝑖(𝑡)| ≥ | ∫ 𝜉𝑖−𝑝 (𝜐𝑖−𝑝(𝑠 + 𝑡𝑛) − 𝜐𝑖−𝑝(𝑠)) 𝑑𝑠

𝑡

𝑠𝑛

− 

  

                    −| ∫ (𝑎𝑖−𝑝 −
𝜁𝑖−𝑝

𝜉𝑖−𝑝
) (𝜔𝑖(𝑠 + 𝑡𝑛) − 𝜔𝑖(𝑠))𝑑𝑠

𝑡

𝑠𝑛

| − 

 

            −| ∫ (𝜁𝑖−𝑝 (𝑎𝑖−𝑝 −
𝜁𝑖−𝑝

𝜉𝑖−𝑝
) − 𝜉𝑖−𝑝𝑏𝑖−𝑝) (𝜔𝑖−𝑝(𝑠 + 𝑡𝑛) − 𝜔𝑖−𝑝(𝑠)) 𝑑𝑠

𝑡

𝑠𝑛

| − 

     

                   −| ∫ 𝜉𝑖−𝑝 ∑ 𝑐(𝑖−𝑝)𝑗(𝑓𝑗 (𝜔𝑗(𝑠 + 𝑡𝑛)) − 𝑓𝑗 (𝜔𝑗(𝑠))

𝑝

𝑗=1

)𝑑𝑠

𝑡

𝑠𝑛

| − 

 

−|𝜔𝑖(𝑠𝑛 + 𝑡𝑛) − 𝜔𝑖(𝑠𝑛)| ≥ 

 

                  ≥ 𝜉𝑖−𝑝𝜀0𝜅 −
3𝜀0

2𝑙
𝜅 (𝑎𝑖−𝑝 −

𝜁𝑖−𝑝

𝜉𝑖−𝑝
) + |𝜁𝑖−𝑝 (𝑎𝑖−𝑝 −

𝜁𝑖−𝑝

𝜉𝑖−𝑝
) − 𝜉𝑖−𝑝𝑏𝑖−𝑝| + 
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+𝐿𝜉𝑖−𝑝 ∑ 𝑐(𝑖−𝑝)𝑗

𝑝

𝑗=1

− 𝜅
𝜀0

𝑙
,                                                                           (2.4.22) 

 

for 𝑡 ∈ [𝑠𝑛, 𝑠𝑛 + 𝜅] and 𝑖 = 𝑝 + 1, 𝑝 + 2, . . . ,2𝑝. According to (2.3.17), from 

(2.3.20) and (2.3.22) we got that: 

 

|𝜔𝑖(𝑡 + 𝑡𝑛) − 𝜔𝑖(𝑡)| ≥
𝜀0

2𝑙
, for 𝑡 ∈ [𝑠𝑛, 𝑠𝑛 + 𝜅], 𝑖 = 𝑝 + 1, 𝑝 + 2, . . . ,2𝑝.      (2.3.23) 

 

Now, we show unpredictability for 𝜔𝑖(𝑡), 𝑖 = 1,2, … , 𝑝. Similarly to the 

coordinates 𝑖 = 𝑝 + 1, 𝑝 + 2, … ,2𝑝, let us consider two cases: (i) Δ2 = |𝜔𝑖(𝑡𝑛 +
+𝑠𝑛) − 𝜔𝑖(𝑠𝑛)| ≥ 𝜀0/𝑙2 and (ii) Δ2 = |𝜔𝑖(𝑡𝑛 + 𝑠𝑛) − 𝜔𝑖(𝑠𝑛)| < 𝜀0/𝑙2. 

(i) For Δ2 ≥ 𝜀0/𝑙2, by (2.3.19) we get that: 

 
|𝜔𝑖(𝑡 + 𝑡𝑛) − 𝜔𝑖(𝑡)| ≥ |𝜔𝑖(𝑡𝑛 + 𝑠𝑛) − 𝜔𝑖(𝑠𝑛)| − |𝜔𝑖(𝑠𝑛) − 𝜔𝑖(𝑡)| − 

 

−|𝜔𝑖(𝑡 + 𝑡𝑛) − 𝜔𝑖(𝑡𝑛 + 𝑠𝑛)| ≥
𝜀0

𝑙
−

𝜀0

4𝑙2
−

𝜀0

4𝑙2
=

𝜀0

2𝑙2
,             (2.3.24) 

 

if 𝑡 ∈ [𝑠𝑛 − 𝜅, 𝑠𝑛 + 𝜅], 𝑖 = 1,2, . . . ,2𝑝, and 𝑛 ∈ ℕ. 

(ii) If Δ2 < 𝜀0/𝑙2, then from (2.3.15) and (2.3.23) it follows that: 

 

|𝜔𝑖(𝑡 + 𝑡𝑛) − 𝜔𝑖(𝑡)| ≥ | ∫
1

𝜉𝑖
(𝜔𝑖+𝑝(𝑠 + 𝑡𝑛) − 𝜔𝑖+𝑝(𝑠)) 𝑑𝑠

𝑡

𝑠𝑛

| − 

 

   −|𝜔𝑖(𝑠𝑛 + 𝑡𝑛) − 𝜔𝑖(𝑠𝑛)| − | ∫
𝜁𝑖

𝜉𝑖
(𝜔𝑖(𝑠 + 𝑡𝑛) − 𝜔𝑖(𝑠))𝑑𝑠

𝑡

𝑠𝑛

| ≥ 

                                         

≥
1

𝜉𝑖
𝜅

𝜀0

2𝑙
−

𝜀0

𝑙2
−

𝜁𝑖

𝜉𝑖
𝜅

3𝜀0

2𝑙2
,                                                                      (2.3.25) 

 

if 𝑡 ∈ [𝑠𝑛, 𝑠𝑛 + 𝜅], 𝑖 = 1,2, . . . , 𝑝. By inequality (2.3.18) we obtain that |𝜔𝑖(𝑡 + 𝑡𝑛) −

𝜔𝑖(𝑡)| ≥
𝜀0

2𝑙2
, for 𝑡 ∈ [𝑠𝑛, 𝑠𝑛 + 𝜅], 𝑖 = 1,2, . . . , 𝑝. Thus, one can conclude that 𝜔(𝑡) is 

an unpredictable solution with 𝜀0̅ =
𝜀0

2𝑙2
, 𝑠�̅� = 𝑠𝑛 +

3𝜅

4
 and 𝛿̅ = 𝛿 +

𝜅

4
. 

Finally, we discuss the stability of the solution 𝜔(𝑡). Let us define 2p-

dimensional function 𝑧(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑝(𝑡), 𝑦1(𝑡), . . . , 𝑦𝑝(𝑡)), and rewrite system 

(2.3.3), (2.3.4) in the vector form: 

 
𝑑𝑧(𝑡)

𝑑𝑡
= 𝐴𝑧(𝑡) + 𝐹(𝑡, 𝑧),                                           (2.3.26) 
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where matrix 𝐴 = 𝑑𝑖𝑎𝑔(−
𝜁1

𝜉1
, . . . , −

𝜁𝑝

𝜉𝑝
, −(𝑎1 −

𝜁1

𝜉1
), . . . , −(𝑎𝑝 −

𝜁𝑝

𝜉𝑝
)) and 𝐹(𝑡, 𝑧) =

(𝐹1(𝑡, 𝑧), 𝐹2(𝑡, 𝑧), . . . , 𝐹2𝑝(𝑡, 𝑧)) is a vector-function, such that: 

 

𝐹𝑖(𝑡, 𝑧) =
1

𝜉𝑖
𝑧𝑖+𝑝(𝑡), 𝑖 = 1, … , 𝑝, 

 

and 

 

 𝐹𝑖(𝑡, 𝑧) = − (𝜉𝑖−𝑝𝑏𝑖−𝑝 − 𝜁𝑖−𝑝 (𝑎𝑖−𝑝 −
𝜁𝑖−𝑝

𝜉𝑖−𝑝
)) 𝑧𝑖−𝑝(𝑡) + 

 

+𝜉𝑖−𝑝 ∑ 𝑐(𝑖−𝑝)𝑗𝑓𝑗 (𝑧𝑗(𝑡))

𝑝

𝑗=1

+ 𝜉𝑖−𝑝𝑣𝑖−𝑝(𝑡), 𝑖 = 𝑝 + 1, . . . ,2𝑝. 

 

We denote 𝜆 = min
𝑖

(
𝜁𝑖

𝜉𝑖
, 𝑎𝑖 −

𝜁𝑖

𝜉𝑖
), and 𝐿𝐹 = max

𝑖
(

1

𝜉𝑖
, |𝜁𝑖(𝑎𝑖 −

𝜁𝑖

𝜉𝑖
) − 𝜉𝑖𝑏𝑖| +

+𝐿𝜉𝑖 ∑ 𝑐𝑖𝑗
𝑝
𝑗=1 ), 𝑖 = 1, … , 𝑝. 

Consider 

 

𝜔(𝑡) = 𝑒𝐴(𝑡−𝑡𝑜)𝜔(𝑡𝑜) + ∫ 𝑒𝐴(𝑡−𝑠)𝐹(𝑠, 𝜔(𝑠))𝑑𝑠
𝑡

𝑡𝑜

, 

 

and another solution 𝜓(𝑡) of the system (2.3.26) 

 

𝜓(𝑡) = 𝑒𝐴(𝑡−𝑡𝑜)𝜓(𝑡𝑜) + ∫ 𝑒𝐴(𝑡−𝑠)𝐹(𝑠, 𝜓(𝑠))𝑑𝑠
𝑡

𝑡𝑜

. 

 

We have that  

 

|||𝜔(𝑡) − 𝜓(𝑡)||1 ≤ 

 

≤ 𝑒−𝜆(𝑡−𝑡𝑜)||𝜔(𝑡𝑜) − 𝜓(𝑡𝑜)||1 + ∫ 𝑒−𝜆(𝑡−𝑠)𝐿𝐹||𝜔(𝑠) − 𝜓(𝑠)||1𝑑𝑠
𝑡

𝑡𝑜

, 

 

for 𝑡 ≥ 𝑡𝑜. 
Applying Gronwall-Bellman Lemma, one can attain that: 

 

||𝜔(𝑡) − 𝜓(𝑡)||1 ≤ ||𝜔(𝑡𝑜) − 𝜓(𝑡𝑜)||1𝑒(𝐿𝐹−𝜆)(𝑡−𝑡𝑜), 𝑡 ≥ 𝑡𝑜.     (2.3.27) 
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Condition (I8) implies that 𝜔(𝑡) is uniformly exponentially stable solution of 

the system (2.3.26). 

Example 9. Let us take into account the system: 

 

𝑑2𝑥𝑖(𝑡)

𝑑𝑡2
= −𝑎𝑖

𝑑𝑥𝑖(𝑡)

𝑑𝑡
− 𝑏𝑖𝑥𝑖(𝑡) + ∑ 𝑐𝑖𝑗𝑓𝑗(𝑥𝑗(𝑡)) + 𝑣𝑖(𝑡),

3

𝑗=1

                   (2.3.28) 

 

𝑖 = 1,2,3, 𝑎1 = 6, 𝑎2 = 5, 𝑎3 = 7, 𝑏1 = 8, 𝑏2 = 6, 𝑏3 = 8, 𝑓(𝑥) = 0.35𝑎𝑟𝑐𝑡𝑔(𝑥), 

 

(

𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

𝑐31 𝑐32 𝑐33

) = (
0.02 0.03 0.02
0.04 0.05 0.01
0.03 0.06 0.02

) 

 

and 𝑣1(𝑡) = −58Θ3(𝑡) + 5, 𝑣2(𝑡) = 76Θ3(𝑡) + 4, 𝑣3(𝑡) = 42Θ(𝑡) − 3, Θ(𝑡) = 

= ∫ 𝑒−3(𝑡−𝑠)Ω(𝑠)𝑑𝑠
𝑡

−∞
. The function 𝑣(𝑡) is unpredictable in accordance with 

properties of unpredictable functions. The conditions (I1) -(I8) hold for the network 

(2.3.28) with 𝜉1 = 𝜉2 = 2, 𝜉3 = 3, 𝜁1 = 𝜁2 = 4, 𝜁3 = 4.4, 𝐿 = 0.35, 𝑀𝑓 = 0.56, 

 𝐻 = 2. It is not difficult to calculate that 𝐿𝐹 = 0.57 and 𝜆 = 1.47. Consequently, 

there exists the unpredictable solution, 𝑥𝑖(𝑡), of the system. Since it is not possible to 

indicate the initial value of the solution, we apply the property of asymptotic stability, 

since any solution from the domain ultimately approaches the unpredictable 

oscillation. That is, to visualize the behavior of the unpredictable oscillation, we 

consider the simulation of another solution. We shall simulate the solution 𝜔(𝑡) with 

initial conditions 𝜔1(0) = 1.023, 𝜔2(0) = 1.516, 𝜔3 = 0.275. 
 Utilizing (2.3.27), we have that: 

 

||𝜑(𝑡) − 𝜔(𝑡)||1 ≤ ||𝜑(0) − 𝜔(0)||1𝑒(𝐿𝐹−𝜆)𝑡 < 2𝐻𝑒−0.9𝑡 ≤ 4𝑒−0.9𝑡 , 𝑡 > 0. 
 

 Thus, if 𝑡 >
9

10
(5𝑙𝑛10 + 𝑙𝑛4) ≈ 11.77, then ||𝜑(𝑡) − 𝜔(𝑡)||1 < 10−5, and we 

can say that the graphs of the functions match visually. In other words, what is seen 

in figures 14 and 15 for a sufficiently large time can be accepted as parts of the graph 

and trajectory of the unpredictable solution. Both of the figures reveal the irregular 

behavior of system (2.3.28). 
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Figure 14 – The coordinates of the function 𝜔(𝑡), which exponentially converge to 

the coordinates of the strongly unpredictable solution of the system (2.3.28) 

 

 
 

Figure 15 – The irregular trajectory of the function 𝜔(𝑡) 
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CONCLUSION 

 

The thesis is devoted to the study of unpredictable oscillations of differential 

equations and neural networks.  

In the thesis the definitions of unpredictable sequences and unpredictable 

functions are presented. An example of an unpredictable function is constructed.  

Main results: 

– the existence and uniqueness of uniformly asymptotically stable unpredictable 

solution of linear differential equations; 

– the conditions for the existence and uniqueness of uniformly exponentially 

stable unpredictable and unpredictable solution of quasilinear differential equations;  

– the existence and uniqueness of an asymptotically stable unpredictable and 

strongly unpredictable solution of SICNNs; 

– the existence and uniqueness of an asymptotically stable unpredictable 

solution of INNs; 

– construction of unpredictable functions. 

In each section, examples with numerical simulations are presented to illustrate 

the feasibility of the obtained results. 

The concept of unpredictable oscillations can be useful for finding more 

delicate features in systems with complicated dynamics.  In this framework, the 

results can be developed for partial differential equations, integrodifferential 

equations, functional differential equations, evolution systems, and neural networks. 

Results have been supported as a part of the grant research project of the 

Ministry of Education and Science of the Republic of Kazakhstan on fundamental 

investigations in the field of natural sciences «Cellular neural networks with 

continuous/discrete time and singular perturbations» (No. AP 05132573, 2018-2020). 
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