Project name, IRN	AP23488734 – Ab-initio investigation on electronic and quantum
	transport properties of one-dimensional and two-dimensional van-
	der-Waals nanoheterodevices based on transition metal
	dichalcogenides
Completion date	01.01.2024-31.12.2026
Project supervisor	Sergeyev Daulet, Candidate of Physical and Mathematical Sciences professor
Report	With the development of the scientific and technological base of
•	electronics, there is a gradual miniaturization of its electronic
	components, which in turn leads to functional and structural
	complexity of electronic systems, but an increase in their
	reliability and speed, a decrease in energy consumption, etc. A
	significant increase in placement density and reduction in the size
	of electronic components will most likely be possible on the basis
	of fundamentally new ideas. At present, prototypes of
	nanoelectronic devices with unique electrophysical characteristics
	have already been created. Work is actively underway to develop
	new areas of nanoelectronics. Van der Waals heterostructures,
	which are a set of isolated atomic planes connected with the Van
	der waals force and assembled according to a pre-selected
	for electronic technology. In recent years the electronic and
	optical properties of van der Waals panoheterostructures based on
	transition metal dichalcogenides have been intensively studied
	due to their attractiveness for the development of new quantum
	technologies, as well as the discovery of new fundamental
	quantum phenomena. The aim of this project is to develop
	atomistic models of one-dimensional and two-dimensional van
	der Waals nanoheterodevices based on transition metal
	dichalcogenides (TMDs) in combination with other graphene-like
	materials with different types of conductivity and study their
	electronic and quantum transport properties from first principles,
	including and under the influence of various factors (deformation,
	external electric field, moire potential, zero-dimensional defects,
	etc.). The project is aimed at a model study of the quantum
	van der Weels TMD nanoheterodevices, including when they are
	exposed to various factors. To optimize the geometry of TMD
	nanoheterodevices, as well as determine their quantum transport
	characteristics, density functional theory will be used in
	combination with the nonequilibrium Green's function method.
	The project will develop atomistic models of one-dimensional and
	two-dimensional van der Waals nanoheterodevices based on
	transition metal dichalcogenides in combination with other
	nanomaterials with different types of conductivity, study the
	fundamental phenomena that determine their quantum transport
	characteristics, and study the features of their electronic properties
	under the influence of various factors (deformation, electric field,
	moire potential, zero-dimensional detects, etc.), and research will
	also be carried out to develop models of sensitive nanoelements of
	sensor devices and solar cells.

Purpose	The aim of project is to develop atomistic models of one-
	dimensional and two-dimensional van-der-Waals
	nanoheterodevices based on transition metal dichalcogenides in
	combination with other graphene-like materials with different
	types of conductivity and study their electronic and quantum
	transport properties from first principles, including and under the
	influence of various factors
Expected results •	1) based on the results of research conducted within the framework
	of this project, it is planned to publish at least 3 (three) articles
	and (or) reviews in peer-reviewed scientific journals in the
	scientific direction of the project, indexed in the Science Citation
	Index Expanded and included in 1 (first), 2 (second) and (or) 3
	(third) quartile by impact factor in the Web of Science database
	and (or) having a CiteScore percentile in the Scopus database of
	at least 60 (sixty) (proposed publications: Results in Physics
	(Web of Science – Q1, Scopus – 89%), Advances in Nano
	Research (Web of Science – Q2, Scopus – 94%), Physica E:
	Low-dimensional systems and nanostructures (Web of Science –
	Q2, Scopus – 78%), IEEE Sensors Journal (Web of Science –
	Q1, Scopus – 90%), Crystals (Web of Science – Q2, Scopus –
	54%), Electronic Materials Letters (Web of Science – Q3,
	Scopus – 70%), etc.); at least 1 (one) article or review in a peer-
	reviewed foreign or domestic publication recommended by
	Committee for Quality Assurance in the Field of Science and
	Higher Education (supposed publications: Eurasian Journal of
	Physics and Functional materials, Bulletin of the Karaganda
	University – Physics, or foreign scientific publications indexed in
	Citation Index from Classicate Analytics on Secure database)
	2) there are no many to multich monographic healts and (or)
•	(or) where are no plans to publish monographs, books and (or)
	houses.
	3) it is planned to apply for a patent for a utility model in the
	Kazakhstan natent Office:
	4) there are no plans to develop scientific, technical, design
	documentation:
•	5) dissemination of the results of the work among potential users.
	the scientific community and the general public will be carried
	out in the form of scientific publications in peer-reviewed foreign
	and domestic journals, as well as in the form of participation in
	international scientific conferences;
•	6) other measurable results in accordance with the requirements of
	the competition documentation and the features of the project:
•	1) scope of application of the expected results: nanoelectronics,
	microelectronics, renewable energy; target consumers: research
	laboratories, higher education institutions.
•	2) the fundamental results obtained during the study can be useful
	for the further development of active electronic components of
	nano- and microelectronics;
•	b) applicability and (or) possibility of commercialization of the
	obtained scientific results; the obtained atomistic models of
	solar cells and sensitive elements of nanosensors.
_	A) the identification of new quantum transport properties of
•	nanoheterostructures based on transition metal disbalaggenides
	can be used to improve the output characteristics of existing
	electrical devices and can also be taken into account when
	developing new types of electronic components:

•	5) the results obtained can be applied to the development of new
	types of electronic components, sensors, and solar cells.
Research group	Supervisor: Main researcher: Sergeyev Daulet, Candidate of
	Physical and Mathematical Sciences, Professor, H-Index
	h = 10; ResearcherID: O-3783-2017, ORCID ID: 0000-0001-7426-
	3039, Scopus Author ID: 55237792800
	https://www.scopus.com/authid/detail.uri?authorId=55237792800
	Shunkeev Kuanyshbek, Doctor of Physical and Mathematical
	Sciences, Professor, H-Index h=12; Researcher ID: O-8849-2017;
	ORCID ID: 0000-0002-3860-397X; Scopus Author ID:
	57211063006
	https://www.scopus.com/authid/detail.uri?authorId=57211063006
	Zhanturina Nurgul, PhD, Associate Professor, H-index h=7; Researcher ID: GLL-4537-2022:
	ORCID ID: 0000-0001-9540-6334: Scopus Author ID:
	55588115900, https://www.scopus.com/authid/detail.uri?
	authorId=55588115900
	Duisenova Ainur, PhD, H-Index h=2; Researcher ID: AEL-8118-2022; ORCID ID: 0000-0003-4868-1944; Scopus Author ID:
	57221375049
	https://www.scopus.com/authid/detail.uri?authorId=57221375049
	Lathrough A and Master of Natural Sciences II Index h=2.
	Descention ID: CZL 1246 2022; OD CID ID: 0000 0002 2422
	Researcher ID: GZL-1340-2022; ORCID ID: 0000-0003-3423-
	5120; Scopus Author ID:
	https://www.scopus.com/authid/detail.uri?authorId=5/211115630
	Kenzhebaeva Adelya - doctoral student of K.Zhubanov ARU. H-
	Index h=1; Researcher ID: DAI-0449-2022; ORCID ID: 0000-
	0002-0214-9517: Scopus Author ID:
	59249718200
	https://www.scopus.com/authid/detail.uri?authorId=59249718200
List of published works	