Project name, IRN	AP22685992 – Development of energy and mass
	analyzers for space research.
Completion date	01.01.2024-31.12.2026
Project supervisor	Shugayeva Tilektes, PhD, senior lecturer
Report	The main idea of the project is related to the invention of mass
•	spectrometers and energy analyzers, which can be used in physics in
	the study of fast processes, in bioorganic chemistry for the
	identification and quantitative analysis of various substances, as well
	as in space research and other fields under conditions of severe
	restrictions on mass and dimensions devices.
	Time-of-flight mass spectrometers are widely used in space
	research due to their small size and weight, since these parameters are
	important in space conditions. Time-of-flight mass spectrometers are
	used to determine the chemical composition of cosmic dust and the
	spacecraft's own atmosphere. The advantages of such mass
	spectrometers compared to instruments of other operating principles
	are their small size and high sensitivity
Relevance	Comparing the advantages and disadvantages of different
Kelevanee	mass analysis methods used in portable instruments we can conclude
	that static magnetic analyzers require less complex electronic
	equipment and less power consumption than dynamic analysis
	systems while the latter have a simpler design and are easier to
	ministurize
	At the same time, rapid determination of the composition of
	multicomponent mixtures in real time can only be achieved by static
	magnetic or dynamic time of flight mass analyzers which
	distinguishes them favorably from all other methods of analysis
	Moreover, time of flight systems have the adventage of being able to
	proceeding and systems have the advantage of being able to
	practically unifilitedly increase the mass range and completely
	suppress detector noise, while static systems allow the use of
	relatively high sample pressure in the ionization region and have
	greater freedom in design choice, which is important when working
Drawn o go	With low-volatile substances.
Purpose	Development, calculation and computer modeling of a
	gridless energy analyzer based on two-dimensional axisymmetric
	electrostatic militors, as well as mass analyzers for space research.
Expected results	1) based on the results of research conducted within the
	framework of the project, the following publications are planned:
	- at least 2 (two) articles in journals from the first three
	quartiles by impact factor in the Web of Science database or having
	a CiteScore percentile in the Scopus database of at least 50.
	2) the development of scientific, technical and design
	documentation is not planned;
	3) dissemination of the results of the work among potential
	users, the scientific community and the general public will be carried
	out in the form of publications in scientific journals, as well as
	through participation in international scientific conferences;
	4) The target consumers of the results obtained can be
	scientific laboratories and higher education institutions.
	5) The fundamental results obtained can be used to create new
	promising COS.
Research group	Supervisor – Main researcher: Shugayeva Tilektes, PhD,
	Senior lecturer, H index = 1 ((Scopus Author ID: 57210147416;
	Researcher ID: <u>AAQ-5091-2020</u> ; ORCID: 0000-0002-4797-4529).
	https://www.scopus.com/authid/detail.uri?authorId=57210147416

	Spivak-Lavrov Igor Felixovich, D.Sc. (Phys.Med.), professor, Indeh
	Hirsha – 5
	ResearcherID – 3708676 Researcher ID Web of Science – AAQ-8729-2020 ORCID – 0000-0002-2683-2425 Scopus Author ID – 6603647700S copus Author ID –36134289000
List of published works	1. I.F. Spivak-Lavrov, A.Sh. Amantaeva, O.A. Baisanov., Shugaeva T.Zh. Approximate calculation of static mass analyzers based on two-dimensional fields, Vestnik KazNu. Almaty - 2024 Volume 90. No. 3, p. 77–83. DOI:https://doi.org/10.26577/RCPh.2024v90i3- 010

-

	Spivak-Lavrov Igor Feliksovich, Doctor of Physical and Mathematical Sciences, Professor, Hirsch index h=5 (
Publications in scientific	И.F. Spivak-Lavrov, A.Sh. Amantaeva, O.A. Baisanov., Shugaeva
publications	T.Zh. Approximate calculation of static mass analyzers based on
	two-dimensional fields, Vestnik KazNu. Almaty – 2024. – Volume
	90. No. 3, p. 77–83.
	DOI: <u>https://doi.org/10.26577/RCPh.2024v90i3-010</u>