Project name, IRN	AP23488688 – Experimental study of fundamental
	mechanisms increasing the luminescence yield of ionic crystals at
	room temperature
Completion date	01.01.2024-31.12.2026
Project supervisor	Shunkeyev Kuanyshbek, d.phm.s., professor
Report	Currently, ionic crystals (LiF, NaF) are widely used as optical
	materials, transparent in a wide spectral range, scintillation and
	thermoluminescent dosimeters for detecting ionizing radiation in
	the nuclear and atomic industry, medicine and ecology, etc.
	The uniqueness of ionic crystals lies in enabling simultaneous
	study of two processes: luminescence yield (scintillators) and the
	efficiency of radiation defect formation (dosimeters), originating
	from the decay of self-trapped excitons (STEs).
	Despite the prevalent use of STE-based scintillators, several
	drawbacks persist: firstly, reduction of initially high luminescence
	yield at low temperatures ($\eta \approx 1$); secondly, undesirably long
	afterglow; thirdly, material hygroscopicity and the need of storage
	in evacuated capsules.
	Universal scintillators meeting all criteria haven't been found
	yet, necessitating a study of the fundamental mechanisms that
	increase luminescence yield of ionic crystals at room
	temperatures.
	This project introduces a novel approach by focusing on the
	mechanism converting absorbed ionizing particle energy into light
	through by assembling electron-hole (e-h) pairs, the luminescence
	yield of which, unlike STE, increases with temperature.
	The research group has demonstrated significant progress in
	searching for fundamental mechanisms to increase luminescence
	yield of ionic crystals. Using KCl-Na as an example, intense
	luminescence of exciton-like formations (ELFs) was recorded for
	the first time globally, surpassing existing CsI and CsI-Na
	scintillators.
Relevance	These experimental results confirm the relevance of studying
	the fundamental mechanism for increasing light yield in
	scintillation detectors at room temperatures, associated with
	recombination assembly of exciton-like formations with impurity
	cations' involvement.
	Consequently, a systematic study of ELF's fundamental
	mechanisms in ionic crystals under conditions of reduced lattice
	symmetry is necessary. This approach addresses the fundamental
	physical problem of ELF creation and a promising applied
	problem, such as the development of chloride-based scintillation crystals relying on the recombination assembly of ELE during the
	relayation of correlated electron-hole pairs
	Teraxation of concluted electron-note pairs.
Purpose	Using experimental methods, establish the fundamental mechanism
	of decay of electronic excitations (exciton-like formations,
	electron-hole pairs), leading to an increase in the luminescence
	yield of ionic crystals at room temperature.
Expected results	• Ionic crystals with various concentrations of cation impurities
1	will be synthesized on the basis of crystal matrixes grown in
	evacuated ampoules or inert atmospheres.
	• The quality of synthesized samples will be analyzed by
	recording their absorption (optical absorption spectra),
	luminescence (XRL, TL, TL decay kinetics) and
	thermoactivation characteristics (TSL and TSL spectra).
	By studying the XRL spectra of ionic crystals doned by

	 The luminescent and thermoactivation characteristics of doped ionic crystals exposed to thermoelastic and uniaxial deformation will be studied in order to stimulate the ELF assembly allowing to increase the luminescence yield at RT. The absorption/thermoactivation characteristics and TL decay kinetics of doped ionic crystals will be studied in order to elucidate the mechanisms of radiation defect accumulation
	and to estimate the interdefect distances within tunneling
	pairs.
	• The obtained novel experimental data will be analyzed to
	determine the main mechanism of increasing the
	luminescence yield at RT.
Research group	Supervisor - Main researcher: Shunkeyev Kuanyshbek, d.phm.s.,
	professor, H index = 12 (Researcher ID O-8849-2017; ORCID
	0000-0002-3860-397X; Scopus Author ID 57211063006).

-

	https://www.scopus.com/authid/detail.uri?authorId=57211063006
	Lushchik Aleksandr, d.phm.s., professor, H index=34 (Researcher ID F-9130-2013; ORCID 0000-0003-2035-3420; Scopus Author ID 7006987094) https://www.scopus.com/authid/detail.uri?authorId=7006987094
	Sagimbaeva Shynar, c.phm.s., associated professor, H index=7 (Researcher ID ABC-4687-2021; ORCID 0000-0002-1234-3030; Scopus Author ID 6602130267) https://www.scopus.com/authid/detail.uri?authorId=6602130267
	Sergeyev Daulet, c.phm.s., professor, H index=10 (Researcher ID O-3783-2017; ORCID 0000-0001-7426-3039; Scopus Author ID 55237792800). https://www.scopus.com/authid/detail.uri?authorId=55237792800
	Myasnikova Lyudmila, c.phm.s., associated professor, H index=7 (Researcher ID O-9697-2017; ORCID 0000-0003-3326- 7206; Scopus Author ID 16481268100). https://www.scopus.com/authid/detail.uri?authorId=16481268100
	Aimaganbetova Zukhra, PhD, associated professor, H index=7 (Researcher ID E-4496-2015; ORCID 0000-0002-8765-516X; Scopus Author ID 56305678700). https://www.scopus.com/authid/detail.uri?authorId=56305678700
	Ubayev Zhiger, PhD, H index=5 (Researcher ID CDN- 9919-2022; ORCID 0000-0002-8862-3506; Scopus Author ID 57211061571).
	Assel Istlyaup, master, H index =2 (Researcher ID GDL-1881- 2022; ORCID 0000-0003-3423-5126; Scopus Author ID 57211115630).
	https://www.scopus.com/authid/detail.uri?authorId=57211115630
	Duisenova Ainur, PhD, H index =2 (Researcher ID CNL-5127- 2022: ORCID 0000-0003-4868-1944; Scopus Author ID
	https://www.scopus.com/authid/detail.uri?authorId=57221375049
	Kenzhebayeva Adelya, PhD Student, H index =1 (Researcher ID DAI-0449-2022; ORCID 0000-0002-0214-9517; Scopus Author ID 57358022800)
Publications in scientific publications	 K. Shunkeyev, S. Sagimbayeva, Z. Ubaev, A. Kenzhebayeva. Mechanisms for Enhancing Luminescence Yield in KBr Crystals under the Influence of Low-Temperature Uniaxial Elastic Deformation // Crystals, 2024, Vol. 14, 698. DOI: https://doi.org/10.3390/cryst14080698 (Scopus – 60%, WoS – O2)
	2. K. Shunkeyev, A. Lushchik, S. Sagimbayeva, Z. Ubaev, A.

	Tilep. Exciton-Like Luminescence in a KBr Crystal Exposed to Uniaxial Elastic Deformation // Nuclear Instruments and Methods in Physics Research B, 2024, Vol. 547, Article 165194. DOI: https://doi.org/10.1016/j.nimb.2023.165194 (Scopus – 48%, WoS – Q3).
3	K. Shunkeyev, S. Sagimbayeva, L. Myasnikova, A. Istlyaup, A. Kenzhebayeva. High-Temperature Thermally Stimulated Luminescence of NaCl and NaCl-Li Crystals // Eurasian Journal of Physics and Functional Materials, 2024, Vol. 8, No. 2, pp. 71–78. DOI: https://doi.org/10.69912/2616-8537.1188 (KOKCOH, Scopus – 30%).
4	K. Shunkeyev, D.M. Sergeyev, S.Zh. Sagimbayeva, Zh.K. Ubaev, A.E. German, A.Yu. Litskevich. Facility for Registration of Deformation-Stimulated Luminescence of Crystals // Instruments and Experimental Techniques, 2024, Vol. 67, No. 3, pp. 511–518. DOI: https://doi.org/10.1134/S0020441224700854 (Scopus – 14%, WoS – Q4).