The Scientific Center for the investigation of the nature of luminescence and the mechanisms for creating radiation defects in alkali-halide crystals (AHC) with a symmetry of the lattice lowered was organized on the initiative of K.Sh. Shunkeev in 1984. With the direct support of academician Luschik Cheslav Bronislavovich, the laboratory acquired a scientific direction and was equipped with the necessary instruments for creating experimental facilities for absorption, luminescence and thermoactivation spectroscopy, as well as recording ion conductivity and thermostimulated crystal depolarization currents as the lattice symmetry decreases.
An universal cryostat, developed by us, was manufactured in the design bureau of the Institute of Physics of the University of Tartu of Estonia.
Directions of scientific research:
• Experimental studies by absorption, luminescent and thermoactivation spectroscopy methods, as well as recording of ionic conductivity and currents of thermally stimulated depolarization of crystals with decreasing symmetry of the lattice.
• Theoretical studies of the processes of autolocalization of electronic excitations in alkali-halide crystals with a decrease in lattice symmetry.
• Computer simulation of the mechanisms of formation of radiation defects in alkali-halide crystals with a decrease in lattice symmetry.
• Theoretical study and computer simulation of fluctuation superconductivity and current transport in loosely coupled superconductors.
• Development of technology for the compilation of a modern geological map for diatomite resources in the Aktobe region of the Mugalzhar district (“Zhalpak” area).
International cooperation is carried out with the following organizations:
• University of Tartu (Tartu, Estonia),
• University of Gdansk (Gdansk,Poland),
• University of Latvia (Latvia,Riga),
• Lomonosov Moscow State University (Moscow, Russia),
• Ioffe physical-technical institute (Saint-Peterburg, Russia),
• National Research Tomsk University (Tomsk, Russia),
• Ural Federal University named after the First President of Russia B.N. Yeltsin (Yekaterinburg, Russia),
• Kemerovo State University (Kemerovo, Russia),
• Yanka Kupala State University of Grodno (Grodno, Belarus).
• National Laboratory Astana (Nur-Sultan, Kazakhstan).
Academic mobility of students and faculty of the university with Gdansk (Poland) and Tartu (Estonia) universities is carried out.
Science grants:
2003-2005 "To conduct spectroscopic studies of the mechanisms of formation of point defects and their microstructure in ion-dielectric systems with a change in the symmetry of the lattice".
2006-2008 "Control of the luminescent properties of wide-band materials with a limited dimensionality when the lattice symmetry is lowered".
2009-2011 "Investigation of the properties of nanostructured radiation defects in ion-dielectric materials with a decrease in lattice symmetry over a wide temperature range".
2012-2014 "Development of a technology for controlling the physical properties of alkali-halide and superconducting materials with a decrease in lattice symmetry".
2013-2015 "Technology of accumulation of electricity based on alkali-halide crystals with a decrease in lattice symmetry".
2015-2017 "Technology of controlling the mechanism of energy transformation of ionizing radiation in alkali-halide crystals-scintillators".
2015-2017 "Development of a technology for controlling the optical properties of oxides, fluorides and alkali-halide crystals with a decrease in lattice symmetry to produce materials with specified luminescent characteristics".
2020-2021 «Technology of enrichment of natural diatomite raw materials by electrohydraulic method».
2020-2022 «Directed impact on the radiative relaxation of electron excitations to improve the luminescence characteristics of functional materials based on alkali-halide crystals».
2020-2022 «Research of quantum-transport characteristics of nanosystems with unique operational electrical and magnetic properties».
2020-2023 «Experimental researches of luminescence mechanisms of KI, RbI, and CsI crystals under activation by cation-homologue and low-temperature deformation».
2020-2023 «Spectroscopic researches of functional materials based on perovskites and garnets doped with Ln2+, Ln3+, Ln4+».
Contract work:
In 2015, a contractual work was carried out with National Laboratory Astana on the theme "Development of a technology for compiling a modern geological map for diatomite resources in the Aktobe region of the Mugalzhar district (“Zhalpak” area).
In 2019, a contractual work was carried out with Yanka Kupala State University of Grodno to measure dependence of luminescence spectra of thioflavin T and its derivatives in polymeric films on temperature.
Theses:
On the basis of the scientific center, one doctoral (Shunkeev K.Sh.), eight candidate dissertations (Sarmukhanov E.T., Bekeshev A.Z., Tulepbergenov S.K., Sagimbaeva Sh.Zh., Myasnikova L.N., Barmina A.A., Sergeyev D.M., Bizhanova K.B.), three dissertations of Doctor PhD (Zhanturina N.N., Aimaganbetova Z.K., Ubayev Zh.K.).
PERSONNEL TRAINING
Master's programme
The scientific management of dissertations of masters of the specialty 7M01502-Physics and 7M05301-Physics is conducted.
Doctoral studies
The scientific management of dissertations of doctoral students of the specialty 8D05301-Physics is conducted.
Dissertational Council
1. Shunkeyev Kuanyshbek Shunkeyevich - Doctor of Physical and Mathematical Sciences, Professor (Chairman of Dissertation Council);
2. Daulet Maksatovich Sergeyev - Candidate of Physical and Mathematical Sciences, professor at Military Institute of Air Defence Forces named after T. Begeldinov (vice chairman);
3. Sagimbaeva Shynar Zhanuzakovna - Candidate of Physical and Mathematical Sciences, associate Professor (Scientific Secretary);
4. Lissitsyn Victor Mikhailovich - Doctor of Physical and Mathematical Sciences, Professor, the National Research Tomsk Polytechnic University (Russia);
Hirsch indexes:
• K.Sh. Shunkeyev - Professor - 10
• D.M. Sergeyev - Professor - 10
• N.N. Zhanturina - Associate Professor - 6
• S.J. Sagimbaeva - Associate Professor - 6
• L.N. Myasnikova - Associate Professor - 5
• Z. K. Aimaganbetova - PhD, Head of Department - 5
• Ubaev J.K. - PhD, senior teacher - 2
• А. Istlyaup - doctoral student - 1
Publications:
Results of researches were published in the following foreign journals:
• «Physics State Solid»
• «Journal of Luminescence»
• «Journal of Physics: Condensed Matter»
• «Radiation Measurements»
• «Физика твердого тела»
• «Journal of Applied Spectroscopy»
• «Russian Physics Journal»
• «Low Temperature Physics»
• «Journal of Physics: Conference Series»
• «Eurasian Journal of Physical and Functional Materials»
• «Latvian Journal of Physics and Technical Sciences»
• «Nuclear Instruments and Methods in Physics Research»
• «Journal of Nano- and Electronic Physics»
• «International Journal of Nanoscience»
Patents:
2003
1. Шункеев К.Ш., Сармуханов Е.Т., Бекешев А.З., Сагимбаева Ш.Ж. Криостат для деформации кристаллов в широком интервале температур (80-500 К) / Предпатент РК № 14831. опубл. 25.03.03. № 2003/0399.1.
2. Шункеев К.Ш., Сармуханов Е.Т., Бекешев А.З., Сагимбаева Ш.Ж. Способ усиления собственной люминесценции щелочногалоидных кристаллов / Предпатент РК № 14383. опубл. 08.07.03. № 2003/0937.1.
2012
3. Шункеев К., Бармина А., Сармуханов Е., Бижанова К. Универсальный криостат для регистрации спектров поглощения кристаллов при низкой температуре под воздействием деформации и радиации // Патент РК № 26141. Заявка №2010/0304.1 Бюл. № 9 от 14.09.2012.
2014
4. Шункеев К., Нурмагамбетов А., Бармина А., Мясникова Л.Н., Сергеев Д., Жантурина Н. Универсальный криостат для регистрации низкотемпературной ионной проводимости и токов термостимулированной деполяризации деформированных и облученных кристаллов // Инновационный патент на изобретение РК. заявитель Актюб. гос. ун-т им. К. Жубанова. – № 28731; бюл. №7 15.07.2014.
2016
5. Шункеев К., Сергеев Д., Мясникова Л.Н., Бармина А., Аймаганбетова З.К. Способ определения низкотемпературных вакансионных дипольных дефектов в щелочногалоидных кристаллах методом термостимулированной деполяризации // Патент на изобретение РК. заявитель Актюб. гос. ун-т им. К. Жубанова. Опублик. 30.12. 2016. B(11) 31799; G01N 27/00 (2006/01)
2018
6. Патент на изобретение 33327 РК. Способ усиления люминесценции кристалла KCl путем активирования легкими катионами Na / Шункеев К., Мясникова Л., Бармина А., Сергеев Д., Жантурина Н., Сагимбаева Ш.; опубл. 30.11.2018
2019
7. Патент на изобретение 33557 РК. Способ усиления люминесценции кристалла La2O2S путем активирования редкоземельными ионами и воздействия высокого гидростатического сжатия / Шункеев К.Ш., Grinberg M., Жантурина Н.Н., Бармина А.А., Мясникова Л.Н.; опубл. 29.03.2019
8. Патент на полезную модель 4336 РК. Мыло кусковое с диатомитом / Шункеев К.Ш., Бекешев А.З., Курманбаев А.Ш., Мясникова Л.Н., Жубанышова М.; опубл. 01.10.2019.
2021
9. К.Ш. Шункеев, Л.Н. Мясникова, Ш.Ж. Сагимбаева, Ж.К. Убаев, А.Ю. Лицкевич, А.Е. Герман. Cпособ регистрации спектров термостимулированной люминесценции щелочногалоидных кристаллов // Патент на изобретение РК: заявитель Актюб. гос. ун-т им. К. Жубанова. Опублик. №34978 РК от 02.04.2021
10. К.Ш. Шункеев , Л.Н. Мясникова, Ш.Ж. Сагимбаева, Н.Н. Жантурина, З.К. Аймаганбетова, Ж.К. Убаев, А.Г. Маратова. Cпособ воздействия на длину свободного пробега экситонов в щелочногалоидных кристаллах // Патент на полезную модель РК: заявитель Актюб. гос. ун-т им. К. Жубанова. №5978 РК от 09.04.2021
11. Патент на полезную модель 6137 РК. Маска-скраб с диатомитом и алоэ / Сагимбаева Ш.Ж., Шункеев К.Ш., Жантурина Н.Н., Мясникова Л.Н., Аймаганбетова З.К., Истляуп А.С.; опубл. 11.06.2021.
12. Патент на полезную модель 6260 РК. Электрогидравлический способ обогащения диатомита / Тарковский В., Шункеев К.Ш., Сагимбаева Ш.Ж., Мясникова Л.Н.; Тастанова Л.К.
Authorial certificates:
2021
1. А.Г. Маратова, К.Ш. Шункеев, Л.Н. Мясникова, Ж.К. Убаев. Ав. свидетельство: «Цифровая технология регистрации спектров фотолюминесценции, рентгенолюминесценции, туннельной люминесценции и термостимулированной люминесценции щелочногалоидных кристаллов», №12826. от 26. 10. 2020.
2. А.Г. Маратова, К.Ш. Шункеев, Л.Н. Мясникова, Ж.К. Убаев. Ав. свидетельство: Цифровая технология сканирования интегральной туннельной люминесценции и термостимулированной люминесценции щелочногалоидных кристаллов. №12980. от 03. 11. 2020.
Prizes and stipends:
• The Satpayev Prize of the Ministry of Education and Science of the Republic of Kazakhstan (Shunkeyev K. Sh, Sagimbaeva Sh, Tulepbergenov S.K. Bekeshev A.Z.)
• State scientific scholarship of the Ministry of Education and Science of the Republic of Kazakhstan (Shunkeyev K.Sh.)
• State scientific scholarship of the Ministry of Education and Science of the Republic of Kazakhstan for young scientists (Sergeev D.M, Barmina A.A.)
• Prize of mayor of Aktobe region (A.A. Barmina, L.N. Myasnikova)
• «The Best Young scientist of Aktobe region - 2016, 2017» (2nd place) (Myasnikova L.N., Zhanturina N.N., Sergeev D.M., Barmina A.A.)
• «The best teacher of High Educational Institution» (Shunkeyev K.Sh. - 2011, Zhanturina N.N. - 2017, Myasnikova L.N. - 2018)
Monographs, collections of works and textbooks:
Шункеев К.Ш. Релаксация электронных возбуждений в щелочногалоидных кристаллах при понижении симметрии решетки. – Актобе, 2008. – 436 с.
Шункеев К.Ш. Люминесценция и радиационные дефекты в щелочногалоидных кристаллах при понижении симметрии решетки. – Актобе, 2012. – 516 с.
Сергеев Д.М. Ангармонизм сверхпроводящего тока в джозефсоновских структурах. – Актобе, 2012.
Мясникова Л.Н. Люминесценция и экситон-фононное взаимодействие в щелочногалоидных кристаллах при низкотемпературной деформации». – Актобе, 2016. – 140 с.
Сагимбаева Ш.Ж. Технология управления механизмом трансформации энергии ионизирующей радиации в щелочногалоидных кристаллах-сцинтилляторах. – Актобе, 2017. – 120 с.
Бармина А.А. Люминесценция и радиационное дефектообразование в щелочногалоидных кристаллах-сцинтилляторах при понижении симметрии решетки. – Актобе, 2017. – 136 с.
Zhanturina N.N. The influence of temperature, deformation and cationic impurities on luminescent properties of alkali halide materials. – Aktobe, 2018.
Шункеев К.Ш., Grinberg M., Szczodrowski K., Mahlik S., Жантурина Н.Н., Мясникова Л.Н., Бармина А.А., Сагимбаева Ш.Ж. Сборник материалов по разработке технологии управления оптическими свойствами оксидов, фторидов и щелочногалоидных кристаллов при понижении симметрии решетки. – Актобе, 2017. – 112 с.
Жантурина Н.Н. Конденсиаланған күй физикасы: Оқу құралы. Ақтөбе: Қ.Жұбанов атындағы Ақтөбе өңірлік мемлекеттік университеті, 2017. – 140 б.
Zhanturina N., Myasnikova L. Fundamentals of mechanics: educational-methodical workbook. – Aktobe, 2018. – 105 p.
Shunkeyev K., Myasnikova L., Zhanturina N., Tilep A., Zinollin Zh. English-Kazakh-Russian dictionary of physical terms. – Aktobe, 2018. – 171 p.
Myasnikova L.N. Electricity and magnetism: educational-methodical workbook. – Aktobe, 2019. – 112 p.
Zhanturina N. Molecular physics. – Aktobe: Zhubanov Aktobe Regional State University, 2020. – 100 p.
Аймаганбетова З.К. Сілтілігалоидты материалдардағы деформациялық люминесценция және радиациялық ақаулар, Ақтөбе. – 2021.
Physics textbooks for grades 10-11 with updated content, natural-mathematical and social-humanities direction are prepared.
Р. Башарулы, Шункеев К. Ш., Л.Н.Аубакиров, Н.Н.Жантурина, Бармина А. А., З. Аймаганбетова. – Алматы: Атамұра, 2020.
Main results:
1. Experimental installation methods based on absorption, luminescence spectroscopy and thermally activated, and the ionic conductivity and the thermally stimulated depolarization currents for investigating the nature and mechanisms of luminescence radiation defects in alkali halide crystals with decreasing lattice point defects uniaxial plastic and elastic deformation.
2. Made and patented a unique cryostat, allowing the crystal to deform at low temperatures in high technical vacuum mode and record their luminescence, absorption and thermal activation characteristics, and ionic conductivity and thermally stimulated depolarization currents.
3. The first detected and interpreted intensity enhancement effect of self-localized excitons in AHC elastic deformation at low temperature, based on which a new method of enhancing the intrinsic luminescence of alkali halide crystal without transforming excitation energy of an impurity to find modern scintillation counters.
4. The observed effect of intensifying the intrinsic luminescence of alkali-halide crystals is patented in the Republic of Kazakhstan. Registration number number 14383.
5. On the basis of the registration of thermally stimulated depolarization currents crystals cations activated light-polarizing currents homologues found that a reorientation of the dipole defects interpreted widely applicable to DC electricity storage.
6. The mechanism effectively create Х_3^--centers in the association of interstitials halogen by reducing local symmetry lattice AHC-field light homologues cation vacancy defects plastic deformation and elastic deformation of the low temperature voltage.
7. A new physical principle of assembling electron-hole pairs based on crystals activated with light impurities of sodium, substantially improving the scintillation characteristics of alkali-halide crystals, is applied in industry.
8. By the methods of silicate, spectrophotometric, X-ray diffraction, X-ray spectral, chemical, electron microscopic analyzes, the composition of diatom rocks by the area "Zhalpak" was studied. According to the results of studies, the value of the concentration of silica in natural diatomite is determined, which varies from 72.69% to 78.14%, which indicates the uniformity of diatomaceous rocks.
9. On the basis of scientific center "Radiation Physics of materials" for the technique of absorption spectra (maximum at 305 ÷ 335 nm), amorphous silicon (diatomite), and three oxidic components SiO2, Al2O3 and Fe2O3 using modern spectrophotometer «Evolution 300".
Experimental installation for luminescence spectroscopy
A multifunctional spectral complex scans spectra using a high-power monochromator MSD-2 and a photomultiplier tube type H 8259 by «Hamamatsu» operating in the photon counting mode controlled by special programmes SpectraScan and ThermoScan in a wide interval of spectrum 200÷850 nm and temperatures 85÷400 K subject to uniaxial deformation (ε=0.1÷1.2%) under high technical vacuum.
Based on digital technology under low temperature deformation the following spectral characteristics of AHC are registered:
• luminescence by X-ray (LXR),
• tunnel luminescence (TL),
• Thermal stimulated luminescence (TSL),
• time scan of tunnel luminescence,
• TSL spectra.
Scanning speed of spectra: 50, 25, 10, 5, 1 nm/s.
Irradiation of crystals is carried out from X-ray installation RUP-120 in mode 3 mA, 120 kW.
Cryostat for the deformation of crystals at 80÷500 K is patented in the Republic of Kazakhstan
The cryostat allows measurement of luminescence-absorption characteristics of crystals (spectra of absorption, excitation, emission, X-ray luminescence, thermal stimulated luminescence, tunnel luminescence, thermal stimulated depolarization of currents and ionic conductivity) as before deformation and under the action of elastic and plastic deformation of various degrees (0 ≤ ε ≤ 10%) in a wide temperature range (80÷500 K).
The degree of deformation of the crystal (6) in the cryostat is given by the step of the compressing screw (7) and is determined by the following formula:
where l0 is the initial length of the crystal before deformation, which is measured by micrometer or microscope, l is the length of the crystal after deformation.
The step of the compression screw (7) is 1 mm. This means that the crystal is deformed by 1 mm (Δl = 1 mm) when the compression screw is turned completely.
The construction of the cryostat makes it possible to determine experimentally from a given degree of relative deformation of the crystal (e.g. ε = 0.5%, 1.0%, 1.5%, etc.)
For example, for deformation to ε = 1.0 % of NaCl crystal with length – l0 =8 mm, necessary value – = 0.08 which is set by the calibration curve, by turning the crystal holder from point (place) of contact fixation by 2 cm (L=2 cm).
Figure 2.10 – Calibration curve for the experimental determination of the degree of relative deformation of crystals
Experimental installation on thermal activation spectroscopy
The installation makes it possible to record ion conductivity and thermostimulated depolarization currents of crystals in a wide temperature range from 196°С to 350°С in the combination of a specialized cryostat that performs the regime of temperature and low-temperature deformation. The installation is assembled on the basis of the standard vacuum unit VUP-4. The level of technical vacuum is achieved by two steps: forvacuum pumping up to 10⁻² Торр and then - diffusion pump up to 10⁻⁵ Torr.
In the current spectra of thermos-stimulated depolarization of alkali halide crystals, polarization currents of dipole defects are detected. Such a method for recording the polarization dipole currents of alkali-earth metals in a wide temperature range (80÷500 К) after the action of plastic deformation creating a divacancy is designed as an application for an invention.
The technical result achieved in the present invention is a method for recording polarization dipole defects in alkali-halide crystals and determining their maximum disorientation temperature from the peaks of the current spectrum of thermally stimulated depolarization performed by linear heating of the crystal in the temperature range from 80K to 500 K.
Thus, the experimental setup makes it possible to register the ionic conductivity and thermally stimulated depolarization currents in a wide temperature range (80-500 K) of dielectric materials, which are alkali-halide crystals.
Experimental installation of luminescent spectroscopy based on the SDL-2 spectral complex
Spectral complex by luminescence spectroscopy based on SDL-2 with two sources of excitation (photo- and X-ray) using exciting monochromator MDR-12 and registering monochromators MDR-23 (MSD-2) allows realizing for automatic registration of spectra of all types of luminescence of AHC in the photon-counting mode using PhEM of the company of «Hamamatsu» in a wide interval of spectrum.
For solving these problems, a continuous light source is used - xenon lamp AXBL-150, emitting a continuous spectrum from 200 nm to 850 nm. The reliability of scanning the luminescence spectra of the AHC directly depends on the light source, which provides an intense and stable luminous flux.
For this purpose, the xenon lamp, which is part of the standard spectral complex, was replaced with a Hamamatsu EQ-99X LDLS laser source, emitting a highly stabilized and intensive luminous flux in the spectral range of 170-2100 nm, to ensure high-precision registration of the luminescent characteristics of the AHC.
Two types of ionizing radiation sources are provided in the spectral complex - ultraviolet light (S) with photon energy, corresponding to the excitation of anionic excitons in the AHC and X-ray radiation.
Spectral complex in the spectral range from 180 nm to 1200 nm with a replaceable diffraction grating allows to record the spectra of optical absorption, excitation and radiation of substances (crystals, liquids and gases) and to trace the kinetics of these spectra in time.
Experimental installation for absorption spectroscopy
The automatic recording spectrophotometer allows analyzing the transmission and optical absorption spectra of substances (crystals, liquids, and gases) in the spectral range - 190-900 nm (6.5-1.4 eV). The device is equipped with a two-beam optical scheme in contrast to standard spectrophotometers. The built-in computer program provides scanning of spectra in a given spectral interval with different speeds and allows the development of time kinetics. It should be noted the peculiarity of the device that the optical density of substances is registered up to 4 units, when the existing analogous devices have only up to 1.4.
Innovative Electrohydraulic systems KID 21
The installation realizes a controlled high-voltage source with a storage capacitor that is cyclically discharged through special electrodes placed in a liquid medium. For creating the device, scientists of the Faculty of Physics and Technology have solved a number of problems to project and manufacture, on the modern element base of the electrical circuit of the device capable of withstanding pulsed currents of hundreds of kiloamperes for a long time, which occur when the storage capacitor is discharged.
One of the main directions of using the plant by the customer is the elaboration of an electrohydraulic method for enrichment diatomite raw materials, the essence of which is the conclusion of ore fractions using the energy of a plasma that occurs during a short and very powerful electric discharge in a liquid medium.